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Abstract: this article introduces some of the main concepts and methods of the science 
studying complex, self-organizing systems and networks, in a non-technical manner. 
Complexity cannot be strictly defined, only situated in between order and disorder. A 
complex system is typically modeled as a collection of interacting agents, representing 
components as diverse as people, cells or molecules. Because of the non-linearity of the 
interactions, the overall system evolution is to an important degree unpredictable and 
uncontrollable. However, the system tends to self-organize, in the sense that local 
interactions eventually produce global coordination and synergy. The resulting structure 
can in many cases be modeled as a network, with stabilized interactions functioning as 
links connecting the agents. Such complex, self-organized networks typically exhibit the 
properties of clustering, being scale-free, and forming a small world. These ideas have 
obvious applications in information science when studying networks of authors and their 
publications. 
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INTRODUCTION 

In the last two decades, a new paradigm for scientific inquiry has been emerging: 
complexity. Classical science, as exemplified by Newtonian mechanics, is essentially 
reductionist: it reduces all complex phenomena to their simplest components, and then 
tries to describe these components in a complete, objective and deterministic manner 
(3,8). The philosophy of complexity is that this is in general impossible: complex 
systems, such as organisms, societies or the Internet, have properties—emergent 
properties—that cannot be reduced to the mere properties of their parts. Moreover, the 
behavior of these systems has aspects that are intrinsically unpredictable and 
uncontrollable, and cannot be described in any complete manner. At best, we can find 
certain statistical regularities in their quantitative features, or understand their qualitative 
behavior through metaphors, models, and computer simulations.  

While these observations are mostly negative, emphasizing the traditional qualities that 
complex systems lack, these systems also have a number of surprisingly positive features, 
such as flexibility, autonomy and robustness, that traditional mechanistic systems lack. 
These qualities can all be seen as aspects of the process of self-organization that typifies 
complex systems: these systems spontaneously organize themselves so as to better cope 
with various internal and external perturbations and conflicts. This allows them to evolve 
and adapt to a constantly changing environment.  

Processes of self-organization literally create order out of disorder (3). They are 
responsible for most of the patterns, structures and orderly arrangements that we find in 
the natural world, and many of those in the realms of mind, society and culture. The aim 
of information science can be seen as finding or creating such patterns in the immense 
amount of data that we are confronted with. Initially, patterns used to organize 
information were simple and orderly, such as “flat” databases in which items were 
ordered alphabetically by author’s name or title, or hierarchically organized subject 
indices where each item was assigned to a fixed category. Present-day information 
systems, such as the world-wide web, are much less orderly, and may appear chaotic in 
comparison. Yet, being a result of self-organization, the web possesses a non-trivial 
structure that potentially makes information retrieval much more efficient. This structure 
and others have recently been investigated in the science of networks, which can be seen 
as part of the sciences of complexity and self-organization. 

The concept of self-organization was first proposed by the cyberneticist W. Ross Ashby 
(1) in the 1940s and developed among others by his colleague Heinz von Foerster (2). 
During the 1960s and 1970s, the idea was picked up by physicists and chemists studying 
phase transitions and other phenomena of spontaneous ordering of molecules and 
particles. These include Ilya Prigogine (3), who received a Nobel Prize for his 
investigation of self-organizing “dissipative structures”, and Hermann Haken (4), who 
dubbed his approach “synergetics”. In the 1980s, this tradition cross-fertilized with the 
emerging mathematics of non-linear dynamics and chaos, producing an investigation of 
complex systems that is mostly quantitative, mathematical, and practiced by physicists. 
However, the same period saw the appearance of a parallel tradition of “complex 
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adaptive systems” (5), associated with the newly founded Santa Fe Institute for the 
sciences of complexity, that is closer in spirit to the cybernetic roots of the field. Building 
on the work of John Holland, Stuart Kauffman, Robert Axelrod, Brian Arthur and other 
SFI associates, this approach is more qualitative and rooted in computer simulation. It 
took its inspiration more from biology and the social sciences than from physics and 
chemistry, thus helping to create the new disciplines of artificial life and social 
simulation. The remainder of this paper will mostly focus on this second, simulation-
based tradition, because it is most applicable to the intrinsically social and cognitive 
processes that produce the systems studied by information science. Although the other, 
mathematical tradition sometimes uses the term “complex systems” to characterize itself, 
the labels of “non-linear systems” or “chaos theory” seem more appropriate, given that 
this tradition is still rooted in the Newtonian assumption that apparently complex 
behavior can be reduced to simple, deterministic dynamics—an assumption which may 
be applicable to the weather, but not to the evolution of a real-world social system. 
Extending both traditions, the turn of the century witnessed a surging popularity of 
research into complex networks. This was inspired mostly by the growth of the world-
wide web and the models proposed by Watts and Strogatz (6), and Barabasi and Albert 
(7). 

At present, the “science of complexity” taken as whole is still little more than a collection 
of exemplars, methods and metaphors for modeling complex, self-organizing systems. 
However, while it still lacks integrated theoretical foundations, it has developed a number 
of widely applicable, fundamental concepts and paradigms that help us to better 
understand both the challenges and opportunities of complex systems. The present article 
will try to introduce the most important of these concepts in a simple and coherent 
manner, with an emphasis on the ones that may help us to understand the organization of 
networks of information sources. 

 

COMPLEX SYSTEMS  

There is no generally accepted definition of complexity (13): different authors have 
proposed dozens of measures or conceptions, none of which captures all the intuitive 
aspects of the concept, while they are applicable only to a very limited type of 
phenomena, such as binary strings or genomes. For example, the best-known measure, 
“Kolmogorov complexity”, which is the basis of algorithmic information theory, defines 
the complexity of a string of characters as the length of the shortest program that can 
generate that string. However, this implies that random strings are maximally complex, 
since they allow no description shorter than the string itself. This contradicts our intuition 
that random systems are not truly complex. A number of more complex variations on this 
definition have been proposed to tackle this issue, but they still suffer from the fact that 
they are only applicable to strings, not to real-world systems. Moreover, it has been 
proven that the “shortest possible” description is in general uncomputable, implying that 
we can never be sure that we really have determined the true complexity of a string.  

In spite of these fundamental problems in formalizing the notion of complexity, there are 
a number of more intuitive features of complex systems that appear again and again in 



HEYLIGHEN (in Bates & Maack. eds) 

- 4 - 

the different attempts to characterize the domain (8). One that is more or less universally 
accepted is that complexity must be situated in between order and disorder: complex 
systems are neither regular and predictable (like the rigid, “frozen” arrangement of 
molecules in a crystal), nor random and chaotic (like the ever changing configuration of 
molecules in a gas). They exhibit a mixture of both dimensions, being roughly 
predictable in some aspects, surprising and unpredictable in others. This intermediate 
position, balancing between rigidity and turbulence, is sometimes called the “edge of 
chaos”. A number of theorists have proposed that this precarious balance is precisely 
what is necessary for adaptation, self-organization, and life to occur, and that complex 
systems tend to spontaneously evolve towards this “edge” (5). 

Another fundamental feature is that complex systems consist of many (or at least several) 
parts that are connected via their interactions. Their components are both distinct and 
connected, both autonomous and to some degree mutually dependent. Complete 
dependence would imply order, like in a crystal where the state of one molecule 
determines the state of all the others. Complete independence would imply disorder, like 
in a gas where the state of one molecule gives you no information whatsoever about the 
state of the other molecules. 

The components of a complex system are most commonly modeled as agents, i.e. 
individual systems that act upon their environment in response to the events they 
experience. Examples of agents are people, firms, animals, cells and molecules. The 
number of agents in the system is in general not fixed as agents can multiply or “die”. 
Usually, agents are implicitly assumed to be goal-directed: their actions aim to maximize 
their individual “fitness”, “utility” or “preference”. When no specific goal can be 
distinguished, their activity still follows a simple cause-and-effect or condition-action 
logic: an agent will react to a specific condition perceived in the environment by 
producing an appropriate action. The causal relation or rule connecting condition and 
action, while initially fixed for a given type of agent, can in some cases change, by 
learning or evolutionary variation.  

The environmental conditions to which an agent reacts are normally affected by other 
agents’ activity. Therefore, an action by one agent will in general trigger further actions 
by one or more other agents, possibly setting in motion an extended chain of activity that 
propagates from agent to agent across the system. Such interactions are initially local: 
they start out affecting only the agents in the immediate neighborhood of the initial actor. 
However, their consequences are often global, affecting the system of agents as a whole, 
like a ripple produced by a pebble that locally disturbs the surface of the water, but then 
widens to encompass the whole pond.  

 

NON-LINEARITY 

The spreading of a wave is not a complex phenomenon, though, because its propagation 
is perfectly regular and predictable, and its strength diminishes as its reach widens. 
Processes in complex systems, on the other hand, are often non-linear: their effects are 
not proportional to their causes. When the effects are larger than the causes, we may say 
that there is an amplification or positive feedback: initially small perturbations reinforce 
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themselves so as to become ever more intense. An example is the spread of a disease, 
where a single infection may eventually turn into a global pandemic. Another example is 
the chain reaction that leads to a nuclear explosion. When the effects are smaller than the 
causes, there is a dampening or negative feedback: perturbations are gradually 
suppressed, until the system returns to its equilibrium state.  

Interactions with positive feedback are very sensitive to their initial conditions: a change 
in that condition may be so small that it is intrinsically undetectable, yet result in a 
drastically altered outcome. This is called the butterfly effect after the observation that, 
because of the non-linearity of the system of equations governing the weather, the 
flapping of the wings of a butterfly in Tokyo may cause a hurricane in New York. The 
non-observability of the initial perturbations means that the outcome is in principle 
unpredictable, even if the dynamics of the system were perfectly deterministic: no 
weather monitoring system can be so accurate that it senses all the movements of 
butterfly wings… This explains why weather forecasts cannot be truly reliable, especially 
for the longer term. Positive feedback will amplify small, random fluctuations into wild, 
unpredictable swings, making the overall behavior of the system chaotic. An illustration 
can be found in the erratic up-and-down movements of quotations on the stock exchange. 

In spite of the omnipresence of fluctuations, most systems around us appear relatively 
stable and predictable. This is due to the presence of negative feedback, which suppresses 
the effects of such fluctuations. However, while negative feedback makes a system more 
predictable, it also makes it less controllable: if we try to change the state of such a 
system, we may find that our changes are counteracted, and that whatever we do the 
system always returns to its own “preferred” equilibrium state. Examples can be found in 
social systems where attempts from leaders or governments to change the behavior often 
are actively resisted so that they eventually come to nothing.  

The dynamics of complex systems typically exhibits a combination of positive and 
negative feedbacks, so that certain changes are amplified and others dampened. This 
makes the system’s overall behavior both unpredictable and uncontrollable. Moreover, 
such systems are normally open, which means that they exchange matter, energy and/or 
information with their wider environment. For example, an economy or ecosystem is 
dependent on the climate, and the amount of sunlight, rain and heat that it produces. 
These in-going and out-going flows make the dynamics even more complicated, since we 
cannot know every external event that may affect the system. For example, a thriving 
economy or ecosystem may suddenly collapse because of the invasion by a foreign pest. 
Furthermore, the input of energy (such as sunlight) tends to feed amplification processes, 
so that they never reach the equilibrium that would otherwise follow the exhaustion of 
resources.  

 

MODELLING COMPLEX SYSTEMS 

For the above reasons, traditional deterministic models (such as systems of partial 
differential equations) of truly complex systems are in general impracticable (14), if not 
in principle uncomputable (15). In non-linear systems, simplifying the model by using 
approximations is dangerous as well. The common way to approximate the effect of 
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complex interactions by reducing it to the “mean field” (i.e. the average effect of many 
discrete actions performed by independent agents) can actually lead to fundamental 
errors. For example, a differential equation representing the “mean field” effect may 
predict that a certain perturbation will die out because it is too small, while a computer 
simulation of the individual agents finds that its effect is amplified by positive feedback 
until it dominates the system (16).  

Because of these intrinsic difficulties with mathematical models, complexity researchers 
typically prefer computer simulations, which, while of course being approximations as 
well, are easier to manipulate, so that more different factors and variations of the model 
can be explored.  Here, the system’s evolution is traced step-by-step by iteratively 
applying the rules that govern the agents’ interactions, thus generating the subsequent 
states of the system. Such simulations typically include a generator of random variations, 
to represent the effect of unpredictable perturbations. A typical setting is inspired by the 
Darwinian mechanism of natural selection, in which the rules that determine an agent’s 
behavior are randomly “mutated” and sometimes recombined with the rules of another 
agent, after which the “fittest” or best performing agents or rules are selected to carry on, 
while the others are eliminated. To explore the possible behaviors of the system, many 
different “runs”—with different initial conditions or random variations during the 
process—of the simulation are performed. The main variable values for each run are 
collected. These results are then analyzed statistically to discover recurring trends.  

This sometimes produces very robust results, in the sense that all runs, however different 
in their initial behavior, eventually appear to converge to the same type of stable pattern. 
In the majority of cases, the outcomes can be classified into a relatively small number of 
distinct categories. This provides the researchers with a qualitative picture of the most 
likely results—and hopefully an insight into the factors that promote one outcome rather 
than another one. It is only exceptionally that no clear pattern can be discerned in the 
outcomes of the different simulation runs. The reason that complex systems in spite of 
their intrinsic unpredictability tend to settle into a relatively small set of recognizable 
behaviors is their inherent tendency to self-organize. 

 

SELF-ORGANIZATION 

Self-organization can be defined as the spontaneous emergence of global structure out of 
local interactions. “Spontaneous” means that no internal or external agent is in control of 
the process: for a large enough system, any individual agent can be eliminated or 
replaced without damaging the resulting structure. The process is truly collective, i.e. 
parallel and distributed over all the agents. This makes the resulting organization 
intrinsically robust and resistant to damage and perturbations. 

As noted, the components or agents of a complex system initially interact only locally, 
i.e. with their immediate neighbors. The actions of remote agents are initially 
independent of each other: there is no correlation between the activity in one region and 
the activity in another one. However, because all components are directly or indirectly 
connected, changes propagate so that far-away regions eventually are influenced by what 
happens here and now. Because of the complex interplay of positive and negative 



HEYLIGHEN (in Bates & Maack. eds) 

- 7 - 

feedbacks, this remote influence is very difficult to predict and may initially appear 
chaotic.  

To explain the appearance of organization, we need to make one further assumption, 
namely that the outcome of interactions is not arbitrary, but exhibits a “preference” for 
certain situations over others. The principle is analogous to natural selection: certain 
configurations are intrinsically “fitter” than others, and therefore will be preferentially 
retained and/or multiplied during the system’s evolution. When the agents are goal-
directed, the origin of this preference is obvious: an agent will prefer an outcome that 
brings it closer to its goals. For example, in a market a firm will prefer the outcome that 
brings it more profit. In an ecosystem, an animal will prefer an outcome that brings it 
more food, or that reduces its risk of being attacked by a predator. But even inanimate, 
physical objects, such as molecules or stones, have an in-built “preference”, namely for 
the state that minimizes their potential energy. Thus, a stone “prefers” the stable state at 
the foot of a hill to an unstable state on the top. Here, “preference” simply means that the 
unstable state will sooner or later be abandoned, while the stable one will be retained. 

 

CO-EVOLUTION AND SYNERGY 

Given such a preference, it is clear why an individual agent tends to “organize” itself so 
as to settle down in its preferred situation. The problem is that what is best for one agent 
is in general not best for the other agents. For example, more profit for a firm generally 
means less profit for its competitors, and an animal safe from attack by a predator means 
a predator that goes hungry. However, interaction is in general not a zero-sum game: a 
gain by one party does not necessarily imply an equivalent loss by the other party. In 
most cases, an outcome is possible in which both parties to some degree gain. For 
example, a firm may increase its profits by developing a more efficient technology, 
which it then licenses to its competitors, so that they too become more productive. In that 
case, we may say that the interaction exhibits synergy: the outcome is positive for all 
parties; all involved agents “prefer” the outcome to the situation without the interaction.  

In general, such a collective solution is still a compromise, in the sense that not all agents 
can maximally realize their preferences. Not all the stones can end up in the same, lowest 
spot at the bottom of the hill, but they can all end up much lower than they were, by 
reducing the irregular hill to an even plain. Such a compromise reduces the tension or 
“conflict” between competing agents. (Such conflict would otherwise lead to instability 
as every action of the one triggers a counteraction by the other.) In that sense, we may 
say that the agents have mutually adapted; they have coordinated their actions so as to 
minimize friction and maximize synergy. 

The achievement of this stable, synergetic state is in general a process of trial-and-error 
or variation-and-selection. Because agents are independent and interact locally, and 
because the dynamics of the system is unpredictable, they in general do not know what 
the effect of their actions on the other agents will be. They can only try out actions 
because they appear plausible, or even choose them at random, and note which ones bring 
them closer to their goals. Those actions can then be maintained or repeated, while the 
others are abandoned. This is the fundamental dynamics of natural selection. The main 
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difference with traditional Darwinian evolution is that trial-and-error happens 
simultaneously on different sides: the agents co-evolve, the one adapting to the other, 
until they mutually “fit”. 

 

FROM LOCAL TO GLOBAL ORGANIZATION 

To shift from local coordination to global organization, we just need to note that all 
interactions between all agents in the complex system will tend towards such a coherent, 
stable state, until they are all mutually adapted. This process generally accelerates 
because of a positive feedback. The reason is that if two or more agents have reached a 
mutually fit state, this defines a stable assembly to which other agents can now adapt, by 
trying to “fit” into the assembly as well. The larger the assembly, the more “niches” it has 
in which other agents can fit. The more agents join the assembly, the larger it becomes, 
and the more niches it provides for even more agents to join. Thus, the assembly may 
grow exponentially until it encompasses the global system.  

This growth is typically faster when the agents are identical (e.g. molecules of the same 
substance) or similar (e.g individuals from the same species), because the solution found 
by one agent will then suit the other agents as well, so that minimal further trial-and-error 
is needed once a good arrangement is locally found. This typically happens in processes 
of physical self-organization, such as crystallization, magnetization or the emergence of 
coherent light in a laser (4). When the agents are all different (e.g. species in an 
ecosystem), each in turn needs to explore in order to find its unique niche in an 
environment that continues to evolve, resulting in a much less explosive development. 

In the case of identical agents, the global structure that emerges is typically uniform or 
regular, because the arrangement that is optimal for one agent is also the one optimal for 
the other agents. As a result, they all tend to settle into the same configuration. An 
example is a crystal, where all molecules are arranged at regular intervals and in the same 
orientation. In this case, self-organization produces a perfectly ordered pattern. In cases 
where the agents are diverse, like in an ecosystem or a market, the resulting structure is 
much more complex and unpredictable. 

 

GLOBAL DYNAMICS 

If we now consider the system as a whole—rather than the agents individually—we may 
note that the system too undergoes a process of variation. This can be seen as an 
exploration by the system of different regions of its state space, thus following an 
intricate trajectory. (The state space of the system is merely the Cartesian product of the 
state spaces of all its components). Self-organization then means that the system reaches 
an attractor, i.e. a part of the state space that it can enter but not leave. In that sense, an 
attractor is a region “preferred” by the global dynamics: states surrounding the attractor 
(the attractor basin) are unstable and will eventually be left and replaced by states inside 
the attractor.  
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A non-linear system has in general a multitude of attractors, each corresponding to a 
particular self-organized configuration. If the system starts out in a basin state, it will 
necessarily end up in the corresponding attractor, so that the long-term behavior can in 
principle be predicted (assuming we know what the attractor is, which is generally not the 
case). However, if it starts out in a state in between basins, it still has a “choice” about 
which basin and therefore which attractor it ends up in, and this will depend on 
unpredictable fluctuations. An attractor generally does not consist of a single state, but of 
a subspace of states in between which the system continues to move. The self-organized 
configuration, while more stable than the configuration before self-organization, is 
therefore in general not static but full of on-going activity. 

Self-organization can be accelerated by augmenting the initial variation that makes the 
system explore its state space: the more different states it visits, the sooner it will reach a 
state that belongs to an attractor. The simplest way to increase such variation is to subject 
the system to random perturbations, i.e. “noise”. For example, if you shake a pot filled 
with beans, the beans will explore a variety of configurations, while tending to settle into 
the one that is most stable, i.e. where the beans are packed most densely near the bottom 
of the pot. Thus, shaking will normally reduce the volume taken in by the beans. This 
principle was called “order from noise” by the cyberneticist von Foerster (2) and “order 
through fluctuations” by the thermodynamicist Prigogine (3). 

  

EMERGENCE 

The pattern formed by the stabilized interactions, mutual “fittings”, or “bonds” between 
the agents determines a purposeful or functional structure. Its function is to minimize 
friction between the agents, and thus maximize their collective “fitness”, “preference” or 
“utility”. Therefore, we may call the resulting pattern “organization”: the agents are 
organized or coordinated in their actions so as to maximize their synergy (4). However, 
such organization by definition imposes a constraint on the agents: they have lost the 
freedom to visit states outside the attractor, i.e. states with a lower fitness or higher 
friction. They have to obey new “rules”, determining which actions are allowed, and 
which are not. They have lost some of their autonomy. The resulting mutual dependency 
has turned the collection of initially independent agents into an organization, i.e. a 
cohesive whole that is more than the sum of its parts. The goal of this “superagent” is to 
maximize overall synergy rather than individual utility. In a sense, the agents have turned 
from selfish individualists into conscientious cooperators. They have become 
subordinated (or “enslaved” in the terminology of Haken (4)) to the regulations of the 
collective. 

This whole has emergent properties, i.e. properties that cannot be reduced to the 
properties of its parts. For example, a cell has the property of being alive, while the 
molecules that constitute it lack that property; gold has the properties of being shiny, 
malleable and yellow, but these properties do not exist for individual gold atoms (8). 
Rather than the parts individually, emergent properties characterize the pattern of 
interactions or relations between them. They typically include global or “holistic” 
aspects, such as robustness, synergy, coherence, symmetry and function.  



HEYLIGHEN (in Bates & Maack. eds) 

- 10 - 

Different attractor regimes imply different properties for the system obeying that regime. 
For example, a circulating convection current may rotate clockwise or counterclockwise. 
Since it cannot be a priori predicted which attractor the system will end up in, the 
emergent properties of the whole cannot be derived from the properties of its parts alone. 
Once the attractor regime has stabilized, the behavior of the parts is rather regulated or 
constrained by the properties of the higher-level whole. This is called downward 
causation. For example, the correspondence between DNA triplets and amino acids in the 
genetic code is not determined by the chemical properties of the molecules that constitute 
DNA, but by evolutionary history producing a particular mechanism for “reading” DNA 
triplets in living cells. A random variation of that history might well have produced a 
different mechanism and therefore a different code. The languages that different people 
speak are not determined by the neurophysiology of their brain, but by the self-
organization of shared lexicons and grammatical rules within a community of 
communicating individuals.  

While the self-organized whole is intrinsically stable, it is still flexible enough to cope 
with outside perturbations. These perturbations may push the system out of its attractor, 
but as long as the deviation is not too large, the system will automatically return to the 
same attractor. In the worst case, the system is pushed into a different basin but that will 
merely make it end up in a different attractor. In that sense, a self-organizing system is 
intrinsically adaptive: it maintains its basic organization in spite of continuing changes in 
its environment. As noted, perturbations may even make the system more robust, by 
helping it to discover a more stable organization.  

 

COMPLEX NETWORKS 

The structure emerging from self-organization can often be represented as a network. 
Initially, agents interact more or less randomly with whatever other agents happen to pass 
in their neighborhood. Because of natural selection, however, some of these interactions 
will be preferentially retained, because they are synergetic. Such a preferentially 
stabilized interaction may be called a bond, relationship, or link. A link couples or 
connects two agents, in the sense that linked agents preferentially interact with each 
other. The different links turn the assembly of agents into a network. Within the network, 
the agents can now be seen as nodes where different links come together. Perhaps the 
most intuitive example is a social network, which links people on the basis of friendship, 
trust or collaboration. Other well-known examples are the Internet, which connects 
computers via communication links, and the Web, which connects documents via 
hyperlinks. A more abstract example is the biochemical network that connects the 
molecules that react with each other within a cell in order to produce further molecules.  

It is easy to define an abstract mathematical network. You just need a set N consisting of 
nodes ni, and then select any subset L of links from the set of all possible connections 
between two nodes:  

 L = {(ni, nj)} ⊂ N × N.  
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However, complexity researchers have observed that “natural” (i.e. self-organized rather 
than artificially designed) or “complex” networks tend to exhibit a number of specific 
features: they are scale-free, small-world, and clustering. These features are defined 
statistically: certain configurations of links appear with a much higher probability than 
chance. We will here try to explain these particular link distributions from the dynamics 
of self-organization of a network. 

 

RANDOM NETWORKS 

Let us assume that we start with a collection N of independent agents (future nodes of the 
network) that initially interact randomly, thus creating random links. This produces a 
random network, i.e. a network where the links have been selected by chance from the set 
N × N of all possible connections. Random networks have been extensively studied in 
mathematics. They exhibit the phenomenon of percolation: when links between 
randomly chosen nodes are added one by one, larger and larger subsets of N become 
connected into cohesive subnetworks. When more links are added, subnetworks will 
become connected to each other, defining a larger connected subset. When a certain 
threshold is passed, all subsets become connected so that there is now just a single 
connected network. It is said that the network percolates: imagine the links as tubes and a 
liquid being injected into one of the nodes; when the network percolates, the liquid will 
spread throughout the whole system, because any node is now directly or indirectly 
connected to any other node by an uninterrupted path or chain of links. Whatever 
happens in one node of the network can now in principle propagate to every other node in 
the network. 

 

SMALL-WORLD NETWORKS 

The maximum length of the shortest path connecting two nodes in a connected network is 
called the diameter of the network. If the diameter is small relative to the number of 
nodes, the network is said to be a small-world network. The notion derives from the “it’s 
a small world” phenomenon in social networks: two people encountering each other will 
often find that they have one or more acquaintances in common. Studies of social 
networks have indicated that it is in general possible to find a short sequence of friend-of-
a-friend links connecting two people. It has been estimated that on the scale of the world 
as a whole, two randomly chosen individuals are unlikely to be more than 6 such links 
removed from each other (“six degrees of separation”). 

Whereas random networks have the small-world property, the opposite applies to regular 
networks. An example of such a network is a two-dimensional lattice or grid, where each 
node is connected to its 4 direct neighbors (left-right-up-down), each of which is 
connected to its 4 neighbors, and so on. In a square grid of 100 000 × 100 000 = 10 
billion nodes, the nodes at the opposite ends of a diagonal are 200 000 links apart.  This is 
the diameter of the network. Compare this to the distance of a mere 6 links that 
apparently characterizes the world social network with its nearly 10 billion nodes! 
Regular networks, where nodes are linked according to strict, repetitive rules rather than 
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random connections, are typically large-world networks. This means that a change in one 
node will normally take a very long time to propagate to the rest of the network. As a 
result, the network will be slow to react to perturbations or innovations. 

We may conclude that complex networks are not regular. But they are not random either: 
their linking patterns do obey certain regularities, albeit not strictly. In fact, it has been 
shown that a regular network can easily be turned into a small-world network by adding a 
small number of randomly chosen links to the otherwise strictly constrained links (6). 
These random links by definition do not care about the “distances” within the regular 
grid: e.g. they may directly connect nodes that are otherwise 100 000 links apart. Such 
random links create “wormholes” or “shortcuts” between otherwise remote regions, thus 
bringing them suddenly within easy reach. As a result, a small number of random links 
added to a regular network spectacularly decreases the shortest path length between 
nodes. 

 

CLUSTERING 

One of the non-random features that characterize complex networks is clustering. 
Clustering means that when A is linked to B, and B to C, then the probability is high (or 
at least much higher than could be expected in a random network) that A is also linked to 
C. In other words, two randomly chosen connections of B have a much higher than 
chance probability of being connected themselves.  

The origin of this can best be explained by considering social networks. Here, the 
clustering property can be formulated as “the friends of my friends are (likely to be) my 
friends”. In other words, friends tend to form a cluster or community in which everyone 
knows everyone. The reason is simple: when you regularly encounter your friends, you 
are likely to encounter their friends as well. More generally, if an agent A frequently 
interacts with an agent B, and B interacts with C, then the probability is high that A will 
sooner or later interact with C as well. If A and B have some similarity in aims that helps 
them to find synergy, and the same applies to B and C, then A and C are likely to 
discover a synergetic relationship as well.   

 

SCALE-FREE NETWORKS 

A less intuitive feature of complex networks is that their distribution of links tends to 
follow a power law (7): there are many nodes with few links, and few nodes with many 
links. More precisely, the number of nodes N with a given degree (i.e. number of links) K 
is proportional to a (negative) power of that degree: 

  N(K) ~ K-a  

(The values of the exponent a tend to vary between 1 and 3.) A network that obeys a 
power law is called scale-free. When a = 1, N is inversely proportional to K: in other 
words, as the number of links goes up, the number of nodes with that number of links 
goes down proportionally.  



HEYLIGHEN (in Bates & Maack. eds) 

- 13 - 

This property has been established empirically, by counting the number of links in 
various networks, such as the web or social networks. It turns out that a few nodes have 
an inordinate amount of links. They function as the hubs of the network, the central 
“cross-roads” where many different connections come together. The most common 
nodes, on the other hand, have just a few links. This means that nodes are strongly 
differentiated: something that happens to a hub will have a disproportionately large 
influence on the rest of the network, while something that happens to an ordinary node 
may have little or no consequences. This has great practical implications: an innovation 
or perturbation that appears in a hub (e.g. a central network server, a high-visibility web 
page, or a person who is known by many) may change the whole network in a short time, 
because it is immediately propagated far and wide. By identifying the hubs in a network, 
it becomes easier to manipulate its dynamics, for good or for bad. Obvious applications 
are the spread of computer viruses, contagious diseases, new ideas, or fashions.  

Whereas clustering tends to increase distances in a network, by creating locally 
connected clusters that have few links outside the cluster, the presence of hubs has the 
opposite effect. Because hubs have a very large number of links they are likely to link 
into many different clusters, thus acting as shortcuts that reduce the distance between the 
clusters. But this also means that removing a hub may break the connections between 
otherwise remote regions of the network. This is a danger especially in communication 
networks such as the Internet, where the failure of a small number of hubs may split up 
the network into separate “islands” that no longer communicate with each other. Similar 
dangers exist in ecosystems where the disappearance of one or more key species—i.e. 
“hubs” on which many other species depend—may lead to a complete breakdown of the 
system. 

Barabasi and Albert (7) have proposed a theoretical explanation for power-law 
distributions based on the mechanism of preferential attachment: new nodes joining the 
network preferentially establish links with nodes that already have a large number of 
links. They have shown that when the probability of linking to a node is exactly 
proportional to the number of links of that node the resulting network obeys a power law 
with a = 3.  

For a more general scenario for the self-organization of a complex network, consider a 
collection of agents that initially only interact locally with those that happen to pass in 
their neighborhood. Some of these interactions will be stabilized into enduring links. 
Once they have some links, the locality principle entails that agents are more likely to 
forge links with the “friends of their friends” than with randomly chosen others, thus 
promoting clustering. But agents that already have a high number of links also have many 
“friends of friends” (i.e. nodes two links away) and therefore they will be more likely to 
develop additional links within this 2-step neighborhood or cluster. The more links an 
agent has, the larger its neighborhood, and therefore the larger the probability that it will 
receive even more links from within this neighborhood. Similarly, the larger the cluster, 
the more likely it is to receive random links from outside, thus extending the 
neighborhood outwards and linking it into other clusters. This determines a positive 
feedback, which leads to an explosive growth in the number of links. The agents that 
happen to be in the center of such a quickly growing cluster will become the hubs of the 
network. 
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APPLICATION TO KNOWLEDGE NETWORKS 

Having reviewed key concepts typifying complex, self-organizing systems and networks, 
we will sketch some possible applications of these ideas in the area of information 
science. Information science focuses on the knowledge that is available in the documents 
that are available in libraries and databases across the world. These documents are 
typically produced by authors or researchers who investigate a domain, building further 
on the results of other authors, and publishing their results in new papers or books that 
refer to these used sources. This knowledge producing system can be viewed as a very 
complex network, formed by the researchers, the concepts they use and the publications 
they produce. All the "nodes" of the network are linked directly or indirectly, by relations 
such as citation, collaboration or information exchange. This complex system is 
intrinsically self-organizing: no individual or organization is in charge, or can decide in 
which direction knowledge should develop. Novel, globally available knowledge 
emerges out of the spontaneous, local interactions between the individual agents.   

By applying the concepts and methods from the domain of complexity, we may hope to 
better understand the development and structure of this network. We can view it as a 
complex, adaptive system that generates new patterns (knowledge) through the complex, 
non-linear interactions between multitudes of autonomous agents (individual scientists 
and organizations).  This system has the structure of a heterogeneous network (Fig. 1), 
consisting of three basic types of nodes (9): agents, i.e. the individuals or organizations 
who actively process and produce knowledge, containers, i.e. the documents, databases or 
journals in which the produced knowledge is stored and made available to other agents, 
and concepts, i.e. the abstract elements of knowledge itself, which are typically 
represented as keywords.  

 



HEYLIGHEN (in Bates & Maack. eds) 

- 15 - 

 
Fig. 1: a heterogeneous knowledge network, containing authors, concepts and documents 

 

There already exists some preliminary work on subnetworks of this encompassing 
network, such as collaboration networks between authors (10) or citation networks 
between documents. This research has found that they possess typical features of 
complex networks, such as being scale-free and small-world. For example, citation 
networks typically contain a small number of hubs (“citation classics”) with very many 
links, while most publications only gather a few citations. Some of the most successful 
recent methods for information retrieval, such as the PageRank algorithm underlying the 
Google search engine, or the HITS method developed by Kleinberg (11), implicitly use 
this network structure to identify the “hubs” of a hypertext network.  

More interesting even than the static analysis of existing networks is the modeling of 
their evolution. We may assume that an information network will self-organize through 
the propagation of information between nodes across links, creating new links and nodes 
in the process. For example, assume that information is transferred from paper A to 
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researcher B. After reading the paper, B may decide to get some more information linked 
to paper A, e.g. by contacting A's author, or reading some of A's references. These in turn 
may refer B to other authors or papers relevant for B's interests, and so on. Some of these 
additional sources may turn out to be particularly important for B's research, inspiring B 
to develop a new concept, published in the form of one or more papers. This process will 
create links (e.g. B may start collaborating with another author, or refer in new papers to 
papers discovered in this way) and nodes (e.g. new papers, new concepts, new journals). 
Such links and nodes will tend to cluster around a small number of “hubs”—thus defining 
a new “community” of related authors, documents and ideas.  

The emergence of a new scientific domain is a good example of the self-organization of 
such a community of knowledge (12), where people from initially diverse backgrounds 
find each other around a common interest, which gradually coalesces into a new 
paradigm. This process could be observed by mapping the network of authors, 
publications and keywords in a particular domain at regular intervals (e.g. every 2-5 
years), and analyzing it in terms of clustering, hubs, average distances, etc. The change of 
these features over time may show processes of self-organization taking place. A good 
theory of the self-organization of knowledge communities would propose a number of 
processes and parameters that allow us to predict where, when and how such self-
organization is most likely to take place. Such a theory would help us to find not only the 
presently most authoritative concepts, publications or authors (hubs), but those that are 
likely to become so in the future. This would provide a very powerful instrument to 
uncover emerging trends and to direct attention and investment towards the most 
promising people, ideas and information sources. 

 

CONCLUSION 

The science studying complex, self-organizing systems and networks is still in its 
infancy. Yet, it already provides us with a powerful new perspective and a number of 
promising conceptual and modeling tools for understanding the complex phenomena that 
surround us, including organisms, the Internet, ecosystems, markets and communities.  

On the one hand, the complexity perspective reminds us to be modest in our aims: many 
phenomena in nature and society are simply too complex to be analyzed in the traditional 
scientific manner. Openness and non-linearity make a complex system in principle 
unpredictable and uncontrollable: the tiniest internal or external perturbations can be 
amplified into global changes. Therefore, we will never be able to capture it in a 
complete and deterministic model. Still, agent-based computer simulations can help us to 
get an insight into the qualitative dynamics of the system, and to classify and delimit the 
likely scenarios for its further evolution.  

On the other hand, the complexity perspective gives us new reasons for optimism: while 
we cannot truly control a complex system, it tends to self-organize to a state where it 
regulates itself. This state tends to increase the utility or fitness of the system’s active 
components or agents, by coordinating their interactions so as maximize synergy. The 
resulting organization is distributed over all the agents and their interactions, and thus 
much more robust and flexible than any centralized design. Moreover, it determines a 



HEYLIGHEN (in Bates & Maack. eds) 

- 17 - 

number of emergent, global properties that cannot be reduced to the properties of the 
individual components. By understanding the underlying mechanisms, we may be able to 
facilitate and stimulate such self-organization, or to drive it in one direction rather than 
another.  

One of the most recent applications of the complexity perspective is the analysis of 
complex networks, such as the World-Wide Web, and the non-linear processes that 
generate them. This has led to the identification of common statistical features of such 
networks: small-world, clustering and scale-free link distributions. These notions promise 
a wealth of applications in the analysis of information networks, potentially helping us 
with the organization, management, retrieval and discovery of relevant knowledge within 
masses of ill-structured and continuously changing data. 
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