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Abstract: We sketch a foundation for a new theory of distributed intelligence, based 
on the process of challenge propagation, which extends the mechanism of spreading 
activation in neural networks to the collective intelligence emerging from a network of 
interacting agents. Challenge propagation is a form of self-organizing, distributed 
processing that allows agents to collectively tackle challenges too complex for a single 
agent, and that can be mathematically and computationally modelled. The basic idea is 
to combine the notion of “challenge”, which is defined as a phenomenon that elicits 
action from an agent, with the notion of “propagation”, which denotes the process by 
which such phenomenon is iteratively transmitted from agent to agent. A challenge is 
a generalization of the notions of problem, opportunity and activation. It can be 
characterized by valence (positive or negative), prospect, mystery and difficulty. An 
agent’s action on a challenge will typically “relax” the challenge, but not resolve it 
altogether, so that some degree of challenge remains for further agents to act upon. 
Propagation occurs either via a shared medium in which challenging traces are left for 
others (stigmergy), or via a network of agent-to-agent links learned through 
reinforcement of successful transmissions. 

 
 

Introduction 

Contemporary science sees societies, organisms and brains as complex adaptive systems (Ball, 
2012; Holland, 1992; Miller & Page, 2007). This means that they consist of a vast number of 
relatively autonomous agents (such as cells, neurons or individuals) that interact locally via a 
variety of channels. Out of these non-linear interactions, some form of coherent, coordinated 
activity emerges—a phenomenon known as self-organization (Camazine et al., 2003; 
Heylighen, 2013). The resulting organization is truly distributed over the components of the 
system: it is not localized, centralized or directed by one or a few agents, but arises out of the 
interconnections between all the agents.  

The present paper will focus on the distributed intelligence (Fischer, 2006) of such a self-
organizing system, because this is what most fundamentally distinguishes the new paradigm 
from the older paradigm, which sees problem solving and decision making as centralized, 
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sequential processes. We will define intelligence as the ability to process information so as to 
efficiently solve problems and exploit opportunities. What are considered problems, 
opportunities—or more generally challenges—will depend on the goals and values of the 
decision-maker, who can be an individual, an organization, or a superorganism (Heylighen, 
1999, 2012b). Efficiently dealing with a challenge means selecting and performing the right 
actions that solve the problem or exploit the opportunity. 

Traditional models of intelligence in cognitive science and artificial intelligence see the 
problem solving as a process of search through a space of potential solutions. The attempts to 
simulate the neural networks used by our brain, however, led to the notion of parallel, 
distributed processing of information (Bechtel & Abrahamsen, 1991; McLeod, Plunkett, & 
Rolls, 1998; Rumelhart & McClelland, 1986). The idea is that different units or “neurons” 
deal simultaneously with different aspects of the problem or question. In other words, the 
problem is divided into aspects that are processed by several autonomous agents (active units) 
working in parallel—without central supervision or direction. Their contributions are then 
reassembled or aggregated into a collective solution.  
A fundamental advantage of this approach is flexibility and robustness. The many 
contributions ensure redundancy of function: individual units may be unavailable, produce 
erroneous results, or lack relevant data, but the resulting errors tend to be compensated by the 
signals coming from the other units, so that the aggregate result normally is informative—
even in the most confused situations. In a centralized, sequential process, on the other hand, a 
single malfunction along the line can be sufficient to throw everything off-course, so that no 
useful result is produced.  

The same mechanism of compensating for individual ignorance or bias by aggregating a large 
variety of contributions characterizes successful applications of collective intelligence 
(Heylighen, 1999, 2013; Malone, Laubacher, & Dellarocas, 2010; Surowiecki, 2005). But in 
typical social systems, distributed intelligence is more than collective intelligence: 
contributions do not only come from the people in a collective, but from a variety of artifacts, 
tools and technologies that sense, register, store, process or transfer information. This is the 
perspective of distributed cognition, originally proposed by the ethnographer Hutchins (Clark, 
1998; Heylighen, Heath, & Van Overwalle, 2004; Hutchins, 2000). In real-world problem 
solving, we routinely rely on tools such as pen and paper, maps, cameras, telephones and 
calculators to gather and process information. We also rely on other people to provide us with 
their unique observations, skills or ideas. For a complex system—e.g. a Navy ship (Hutchins 
& Lintern, 1995)—to function well, all the people and artifacts involved need to work 
together in a coordinated manner, by sending the right messages at the right moments to the 
right destinations. 

This paper wishes to introduce a new paradigm for modelling this process, challenge 
propagation, which synthesizes my older work on spreading activation in individual and 
collective intelligence (Heylighen, 1999; Heylighen & Bollen, 2002), and my more recent 
ontology of action (Heylighen, 2011b, 2013). The basic idea is to combine the notion of 
“challenge”, which is defined in the action ontology as a phenomenon that elicits action from 
an agent, with the notion of “propagation” or “spreading”, which comes from models of 
neural networks, memetics (Gabora, 1993; Heylighen & Chielens, 2008), and complex 
systems, and which denotes the process by which some phenomenon is iteratively transmitted 
from a point in a node in a network to the neighboring nodes.  
The intention of this work is to provide a conceptual and mathematical foundation for a new 
theory of the Global Brain (Goertzel, 2002; Heylighen, 2008, 2011a, 2011c), which is defined 
as the distributed intelligence emerging from all people and machines as connected by the 
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Internet. However, the notion of challenge propagation seems simple and general enough to 
also provide a foundation for a theory of distributed intelligence in general. This includes 
human intelligence—which as neural network researchers have shown is distributed over the 
billions of neurons in the brain (Bechtel & Abrahamsen, 1991; McLeod et al., 1998)—, the 
collective intelligence of insects, but also various as yet poorly understood forms of 
intelligence in e.g. bacteria (Ben-Jacob, Becker, Shapira, & Levine, 2004) or plants 
(Trewavas, 2003).  
In fact, I assume that—in contrast to traditional, sequential models of artificial intelligence—
all forms of “natural” intelligence are distributed. This means that they emerge from the 
interactions between a collective of autonomous components or agents that are working in 
parallel. This perspective has also been called the “society of mind” (Minsky, 1988): a mind 
or intelligence can be seen as a collaboration between relatively independent agents. More 
generally, intelligence can be viewed as the capability for coordinated, organized activity. 
Excluding “intelligent design” accounts—which presuppose the very intelligence they purport 
to explain—this means that intelligence must ultimately be the result of self-organization 
(Heylighen, 2013), a process which typically occurs in a distributed manner. 

Another reason to focus on distributed intelligence is that traditional intelligence models—in 
which a well-defined agent solves a well-defined problem (and then stops)—are completely 
unrealistic for describing complex adaptive systems, such as an organization, the Internet, or 
the brain. In such systems, everything is “smeared out” across space, time and agents: it is 
never fully clear who is addressing which problem where or when. Many components 
contribute simultaneously to many “problem-solving” processes, and problems are rarely 
completely solved: they rather morph into something different. That is why the notion of 
“problem” will need to be replaced by the broader notion of “challenge” and the sequential, 
localized process of “search” (for a problem solution) by the parallel, distributed process of 
“propagation”.  

The difficulty, of course, is to represent such a complex, ill-defined process in a precise, 
mathematical or computational manner. There exist already a number of useful paradigms for 
doing this, including multi-agent systems, complex dynamic systems, neural networks, and 
stigmergy (Heylighen, 2015; Parunak, 2006). The challenge propagation paradigm is intended 
to synthesize the best features of these different models. The present paper will sketch the 
conceptual foundations that are necessary to build such a model, while leaving the 
mathematical development for another paper (Heylighen, Busseniers, Veitas, Vidal, & 
Weinbaum, 2012).  

 
 

A brief review of intelligence models 

The most simple and common definition of intelligence is the ability to solve problems 
(Heylighen, 1999). A problem can be defined as a difference between the present situation 
(the initial state), and an ideal or desired situation (the goal state or solution). Problem solving 
then means finding a path through the “problem space” that leads from the initial state (say, x) 
to the goal (say, y) (Heylighen, 1988; Newell & Simon, 1972). This requires determining the 
right sequence of steps that leads from x to y (see Fig. 1).  
For non-trivial problems, the number of potential paths that need to be explored increases 
exponentially with the number of steps, so that it quickly becomes astronomical. For example, 
if at each stage you have the choice between 10 possible steps, there will be 10n possible paths 



 Heylighen     4 
 

of length n. That makes one trillion for a path of merely 12 steps long! That is why “brute 
force” approaches (trying out all possible paths in order to find the right one) in general do 
not work, and need to be complemented by what we conventionally call “intelligence”. 
The more problems an agent can solve, the more intelligent it is. Note that this definition does 
not provide an absolute measure of intelligence, as the number of problems that a non-trivial 
agent can solve is typically infinite. Therefore, counting the number of solvable problems 
does not produce the equivalent of an IQ. On the other hand, the present definition does 
produce a partial ordering: an agent A is more intelligent than another agent B, if A can solve 
all problems that B can solve, and some more. In general, though, A and B are incomparable, 
as B may be able to tackle some problems that A cannot deal with, and vice versa.  

 
 

 
 
Figure 1: an illustration of the exponential explosion in the number of possible paths leading 
from an initial problem state via subsequent steps (or “operators”) to the goal state or problem 
solution. 

 
The partial order provides us with an unambiguous criterion of progress: if an agent, by 
learning, evolution, or design, manages to solve additional problems relative to the ones it 
could deal with before, it has become objectively more intelligent. Natural selection entails 
that more intelligent agents will sooner or later displace less intelligent agents, as the latter 
will at some stage be confronted with problems that they cannot solve, but that the more 
intelligent ones can solve. Thus, the more intelligent ones have a competitive advantage over 
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the less intelligent ones. Therefore, we may assume that evolutionary, social, or technological 
progress will in general increase intelligence in an irreversible way.  

Yet, we should remember that in practice intelligence is highly context-dependent: more 
important than the absolute number of problems you can solve, is whether you can solve the 
problems that are significant for you in your present situation. Adding the capability to solve 
some purely theoretical problems that have no value in your present or future environment 
will in general not increase your fitness (i.e. probability of long-term survival)—and may 
even decrease it if it would make you waste time on contemplating irrelevant issues. 

The simplest model of intelligence is a look-up table or mapping. This is a list of condition-
action rules, of the form: if your problem is x, then the (action you need to perform to attain 
the) solution is y. In short: if x, then y, or, even shorter: x → y. An example is the table of 
multiplication, which lists rules such as: if your problem is 7 x 7, then the solution is 49.  

The next, more complex model of intelligence is a deterministic algorithm. This is a sequence 
of actions that need to be performed on the initial state in a particular order. The sequence is 
typically iterated until the state it produces satisfies the condition for being a solution. An 
example is a procedure to calculate 734 x 2843 or a program that determines the first 100 
prime numbers. Such deterministic procedures to manipulate numbers or, more generally, lists 
of symbols, have given rise to the notion of intelligence as computation.  

A deterministic algorithm (like finding prime numbers) is guaranteed to produce an 
acceptable solution after a finite number of steps. Problems that are more complex do not 
offer such a guarantee: trial-and-error will be needed, and, by definition, you do not know 
whether any trial will produce a solution or an error. In this case, the best you can hope for is 
a heuristic: a procedure that suggests plausible paths towards a solution. Heuristics do not 
necessarily produce the correct solution: they merely reduce the amount of search you would 
have to perform with respect to a “brute force”, exhaustive exploration of the problem space. 
The better the heuristic, the larger the reduction in search and the higher the probability that 
you would find the solution after a small number of steps.  
The view of problem solving as computation or as heuristic search seems to imply a 
sequential process, in which the different actions are performed one by one in a central 
location. A first step in our intended generalization towards distributed processes is the 
reinterpretation of problem solving as information processing. The initial state or problem 
statement can be interpreted as a piece of information received by the agent. The solution of 
the problem is a new piece of information produced by the agent in response to the problem 
statement. The task of the intelligent agent is then to transform or process the input 
information (problem, initial state, “question”) via a number of intermediate stages into the 
output information (solution, goal state, “answer”).  

While the term “information processing” is widespread, its meaning remains surprisingly 
vague: how exactly is a given piece of information transformed into a new—and presumably 
more useful or meaningful—piece of information? Apart from deterministic computation, 
which is merely a very specific case of processing, I do not know of any general, formal 
model of information processing. But this vagueness is an advantage as it allows us to 
consider a variety of mechanisms and models beyond sequential algorithms or search.  

One of the most successful alternative models of information processing can be found in 
neural networks (McLeod et al., 1998). In the simplest case, the network consists of 
connected units or nodes arranged in subsequent “layers”, with the connections pointing from 
the “input layer”, via one or more “hidden” layers, to the final “output layer” (see Fig. 2). 
Information processing happens simply by presenting the information to the input layer (in 
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the form of a pattern of activation distributed across the nodes), letting that information 
propagate through the hidden layers (during which the activation pattern changes depending 
on the strengths of the connections), and collecting the processed information at the output 
layer by reading the activation pattern of the final nodes. This seems to be in essence how the 
brain processes information: the input layer represents the neurons activated by sensory 
organs (perception), the output layer represents the neurons that activate motor organs 
(action), and the hidden layers represent the intervening brain tissue processing the sensory 
information. 

 

input layer output layerhidden layers  
 
Figure 2: a neural network with links (represented by arrows) connecting nodes (represented 
by circles). The problem is posed by differentially activating the nodes in the input layer. This 
activation propagates across the hidden layers while undergoing processing. The final 
activation pattern of the output layer is read off as the solution. 
 

The more general version of such a “feedforward” network is called a “recurrent” network. 
The difference is that a recurrent network allows activation to cycle back to nodes activated 
earlier. Thus, there is no imposed direction “forward”, from input layer to output layer. The 
input in this case is simply the initial pattern of activation over all nodes. The output is the 
final pattern of activation after it has settled into a stable configuration.  
Compared to the sequential models of intelligence, neural networks have two big advantages: 

• processing happens in a parallel, distributed manner, making it more robust and 
flexible;  

• the network does not need an explicit program telling it how to perform the process: it 
can learn from experience.  

The distributed character of neural networks means that its information and “knowledge” are 
not localized in a single component: they are spread out across all the nodes and links, which 
together contribute to the final solution. This makes the processing much more robust: 
individual components may be missing, malfunctioning or contain errors; yet, the 
disturbances this introduces to the process are drowned out by the contributions from the 
other components when everything is aggregated. In a sequential process, on the other hand, 
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every step or component through which the process passes constitutes a bottleneck: if that 
component breaks down, the process may never recover. 

The learning happens via a general “reward” or reinforcement mechanism: links that have 
been successfully used in producing a good solution become stronger; the others become 
weaker. After many experiences of successful or failed processing, the relative strengths of 
the different connections will have shifted so that the probability of overall success has 
become much larger. This intrinsically simple mechanism only works for complex problems 
because of the distributed character of the processing: if only the process as a whole could be 
rewarded or punished, this would not produce enough information for it to learn a complex, 
subtle procedure consisting of many different actions collaborating towards a global solution. 
Because the process is distributed, its components can learn individually, so that the one can 
be reinforced at the same time as its neighbor is weakened, thus rebalancing their relative 
contributions.  
 

 

Challenges 

From problems to opportunities  
The view of intelligence as a capability for problem solving or information processing runs 
into a fundamental issue: what is a meaningful problem, or meaningful information? Why 
should an intelligent agent address certain problems or process certain information, and 
disregard others? In other words, how does an agent decide what to do or pay attention to? In 
the approach of traditional artificial intelligence (AI), this issue is ignored, as AI programs are 
conceived essentially as question-answering systems: the user or programmer introduces the 
question (problem, query, input), and the program responds with an answer (solution, output).  

On the other hand, the issue becomes inevitable once you start to design autonomous systems, 
i.e. systems that should be able to act intelligently in the absence of an instructor telling them 
what to do. Such a system should at least have a value system, i.e. a set of explicit or implicit 
criteria that allow it distinguish “good” outcomes from “bad” ones. Given the ability to 
evaluate or value phenomena, the agent can then itself decide what aspects of its situation are 
“problematic” and therefore require some solution.  

However, acting autonomously is more than solving problems. A situation does not need to 
be “bad” in order to make the agent act. When you take a walk, draw something on a piece of 
paper, or chat with friends, you are not solving the problem of being “walkless”, 
“drawingless”, or “chatless”. Still, you are following an implicit value system that tells you 
that it is good to exercise, to play, to be creative, to see things, to build social connections, to 
hear what others are doing, etc. These kinds of values are positive, in the sense that they make 
you progress, develop, or “grow” beyond what you have now, albeit without any clear goal or 
end point. Maslow in his theory of motivation called such values “growth needs” (Maslow, 
1955, 1970; Heylighen, 1992). Problems, on the other hand, are defined negatively, as the fact 
that some aspiration or need is not fulfilled. With such “deficiency” needs, once the goal is 
achieved, the problem is solved, and the motivation to act disappears. This implies a 
conservative strategy, which is conventionally called “homeostasis”, “regulation”, or 
“control”: the agent acts merely to compensate perturbations, i.e. phenomena that make it 
deviate from its ideal or goal state.  

The reason that this is not sufficient is evolution: the environment and the agents in it are 
constantly adapting or evolving. Therefore, no single state can be ideal in all circumstances. 
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The only way to keep up with these changes (and not lose the competition with other agents) 
is to constantly adapt, learn, and try to get better. That is why all natural agents have an 
instinct for learning, development or growth. Therefore, they will act just to exercise, test 
their skills, or explore new things. 

The difference between positive (growth) and negative (deficiency) values corresponds 
roughly to the difference between positive and negative emotions. Negative emotions (e.g. 
fear, anger, or sadness) occur when a need is frustrated or threatened, i.e. when the agent 
encounters a problem that it may not be able to solve. Positive emotions (e.g. joy, love, 
curiosity) on the other hand, function to broaden your domain of interest and build cognitive, 
material, or social opportunities or resources (Fredrickson, 2004). In other words, they 
motivate you to connect, explore, play, seek challenges, learn, experience, etc. Negative 
emotions tend to narrowly focus your attention to the problem at hand, so that you can invest 
all your resources in tackling that problem; positive emotions tend to widen your field of 
attention so that it becomes open to discovering new opportunities for growth. 

A general theory of values should encompass both positive or growth values, and negative or 
deficiency values. From an evolutionary perspective, all values can be derived from the 
fundamental value of fitness (survival, development, and reproduction), since natural 
selection has ensured that agents that did not successfully strive for fitness have been 
eliminated from the scene. 
The present paper will assume that intelligent agents have some kind of in-built value system, 
and assume that those values elicit specific actions in specific situations. For example, in a 
life-threatening situation, the fundamental value of security or survival will lead the agent to 
act so as to evade the danger—e.g. by running away from the grizzly bear. On the other hand, 
in a safe situation with plenty of promise, the value of curiosity will lead the agent to explore 
a variety of opportunities in order to discover the most interesting ones. The positive or 
negative intensity of such a situation will be denoted as its valence. Valence can be 
understood as the subjective appreciation by an agent of the global utility, well-being or 
fitness offered by a particular phenomenon or situation (Colombetti, 2005). It can be 
represented by a number, which is larger than zero for positive situations, smaller than zero 
for negative ones, and zero for neutral or indifferent ones. 

 

Definition of challenge 
We come to the most important new concept discussed in this paper: a challenge is a situation 
that potentially carries valence for an agent, so that the agent is inclined to act—in the case of 
negative valence by suppressing the perceived disturbance (s); in the case of positive valence 
by exploring or exploiting the perceived opportunity (ies). More concisely, we can define a 
challenge as a phenomenon that invites action from an agent.  

Negative challenges correspond to what we have called problems; positive challenges 
represent affordances for growth or progress. But note that these are not opposites but 
independent dimensions, since a challenge can carry both positive and negative valences. For 
example, for a hunter, encounter with a wild boar is both an opportunity, since a wild boar has 
tasty meat, and a problem, since a wild boar is dangerous. For a company, a free trade 
agreement can be both positive, because it gives access to new clients, and negative, because 
it opens the door to new competitors. A challenge incites action because it represents a 
situation in which not acting will lead to an overall lower fitness than acting—because the 
agent gains fitness by taking action, loses fitness by not taking action, or both. Thus, a 
challenge can be seen as a promise of fitness gain for action relative to inaction. 
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However, a challenge merely inspires or stimulates action, it does not impose it. The reason is 
that a complex situation will typically present many challenging phenomena, and the agent 
will not be able to act on all of them. For example, someone surfing the web typically 
encounters many pages that seem worth investigating, but obviously cannot read all of them. 
We may assume that an agent is intrinsically capable of choice, and that this choice will be 
determined partly by subjective preferences, partly by situational influences, partly by chance, 
i.e. intrinsically unpredictable, “random” fluctuations. Therefore, it is in general impossible to 
determine exactly how an agent will react to a situation, although it should be possible to 
derive statistical regularities about the most common choices. 
One of the reasons for this unpredictability is that agents have bounded rationality 
(Gigerenzer & Selten, 2002): they lack the information or cognitive abilities necessary to 
evaluate all the different challenges. They therefore have to make “informed guesses” about 
the best course of action to take.  
In addition to positivity and negativity, other dimensions worth considering in order to 
compare challenges are (Heylighen, 2012a): 

• prospect (in how far can the agent foresee the different aspects or implications of the 
challenge?),  

• difficulty (how much effort would be involved in tackling the challenge?), and  

• mystery (in how far would tackling this challenge increase the agent’s prospect 
concerning other challenges?). 

Prospect distinguishes expected challenges (which direct the agent’s course of action and 
allow it to work proactively towards (or away from) a remote target) from unexpected ones 
(which divert the course of action, and force the agent to react). Combining the prospect 
dimension with different aspects of the valence dimension produces the simple classification  
of Table 1 (an extension of the one in (Heylighen, 2012a)). The valence dimension has here 
been subdivided in not only positive, negative and neutral (“indifferent”) values, but also the 
“unknown” value, which represents the situation where the agent does not (yet) know what 
valence the challenge may have.  

 

         valence 

prospect 

Positive Negative Unknown Indifferent 

Directions 
(proactive) 

Goals Anti-goals Mysteries Pointers 

Diversions 
(reactive) 

Affordances Disturbances Surprises Variations 

 
Table 1: a 2 x 4 classification of challenge types. 

 
Indifferent challenges, while having zero valence, can still function as “challenges” in the 
sense that they incite actions different from the ones that the agent would take in their 
absence. For example, a temperature of 15°C, while being neither positive nor negative, 
requires a different type of clothing than a temperature of 25°C. Indifferent challenges that are 
foreseen may be called “pointers” or “markers” as they indicate remote phenomena or 



 Heylighen     10 
 

circumstances worth taking into account while setting out a course of action. For example, a 
landmark, such as strangely shaped rock, can help you to orient yourself while walking 
towards your goal, without being in itself valuable. Indifferent challenges that are not 
foreseen may be called “variations” or “fluctuations”, as they merely represent the normal 
type of diversions, such as changes in weather, traffic conditions, people you pass on the 
street, etc., that are not exactly predictable but not surprising either. 

Unknown challenges are potentially much more important than indifferent challenges, as they 
may turn out to have a high positive or negative valence once more information is gathered. 
Therefore, they tend to invite action with much more intensity. When their presence is 
foreseen, they may be called “mysteries” as they represent a focus for curiosity and 
exploration, inviting the agent to gather additional knowledge. An example would be the 
entrance to a cave that you can see from afar, however, without knowing what is inside the 
cave. When they appear unexpectedly, they may be called “surprises” as they functions as 
sudden warnings that the agent’s knowledge has a potentially dangerous gap. An example 
may be someone shouting at you from across the street, which may be an expression of anger 
or a greeting.  

 

From activation to relaxation 
An advantage of the challenge concept is that it is a generalization not only of the problem 
concept, but of the concept of activation on which neural network models are built. Indeed, 
from the definition it follows that a challenge “activates” an agent, by inciting it to act. 

In neurophysiology, the more accurate name used to describe neural activation is “action 
potential”. This denotes a transient rise in the electrical potential of the neuron. This potential 
is propagated along the neuron’s axon to its outgoing synapses, where it can be transmitted to 
connected neurons. The underlying mechanism is the following: an increase in potential 
energy creates a disequilibrium or tension between the parts of neurons that are “activated” 
and those that are not (that remain at a lower potential).  

More generally, in physics a difference in potential energy between two points determines a 
force that pushes the system from the high potential to the low one. Examples are the voltage 
that forces electrical current through a wire (or through an axon), or the gravity that pulls a 
rock down from the hill into the valley. That disequilibrium or force is ultimately what makes 
the system “active”, what compels it to act. The movement from the higher to the lower 
potential brings the system back to equilibrium, a process called relaxation (Faller, 2012), as 
it eliminates the tension or potential difference. In the case of a wire or axon, relaxation 
implies a propagation of the electrical current or activation from the higher to the lower 
potential.  
The same reasoning can be used to understand the resolution of challenges. A challenge can 
be seen as a difference between the present situation (the problem or opportunity) and the 
ideal situation (the solution to the problem or successful exploitation of the opportunity). Note 
that the neutral concept of “difference” allows a challenge to be interpreted positively 
(opportunity) as well as negatively (problem). This difference creates an imbalance or tension 
that needs to be relaxed, typically by propagating it along some medium until the difference is 
dissipated. An example is a wave in water or in air: a local disturbance (e.g. a stone thrown 
into a pond) creates a difference in height or density between the disturbed and non-disturbed 
parts of the medium; this difference (wave front) then spreads out further until it fades away. 
In the case of a wave or electrical crurrent, the direction of propagation is obvious: just follow 
the potential gradient in the direction of steepest descent. In the typical challenges that 
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confront intelligent agents, the direction is much more complex, as there are many possible 
routes to increase fitness (i.e. decrease tension). This requires an exploration of different 
routes, in parallel or in sequence, so as to find the better one. This will bring us to the need to 
better understand propagation. 

An important difference between simple relaxation models and challenge models is that 
intelligent agents, unlike physical systems, must remain in a far-from-equilibrium state: they 
are constantly active, consuming energy, and trying to avoid at all costs a complete standstill 
(i.e. death). Therefore, while they are inclined to relax existing challenges, they will also seek 
new challenges (affordances, resources, opportunities)—unlike physical systems. In that 
sense, a “challenge relaxing” dynamics only describes part of their behavior, and must be 
complemented by a “challenge seeking” dynamics that is better described by some form of 
active exploration (Heylighen, 2012a). This is the equivalent of what we have called positive 
or growth values. It is illustrated in the brain by the fact that thinking never stops: activation 
does not simply diffuse until it fades away; action potentials are continuously generated by 
the brain itself, even in the absence of outside stimuli that play the role of challenges needing 
to be relaxed. This may be included in our model by reinterpreting the lack of interesting 
challenges as a challenge in itself, namely as the problem of boredom. This “metachallenge” 
can only be relaxed by finding new challenges. 

Different agents have in general different value systems, and therefore different “ideal” 
situations. Therefore, the same situation will produce different challenges for different agents. 
All agents will try to relax the challenge, i.e. bring it closer to the case where the present 
situation equals the ideal situation, by acting on it or “processing” it. This allows them to 
either extract benefit from the opportunity, or avoid the penalty imposed by neglecting the 
problem. But in general a single agent will not be able to fully exploit an opportunity or fully 
solve a problem, i.e. completely relax a challenge. This means that the situation after 
processing by one agent still constitutes a challenge for one or more further agents, who either 
have a different value system defining the “ideal” situation, or a different set of skills for 
dealing with the challenge. Thus, some part of the challenge tends to remain, ready to be 
addressed by other agents.  
This produces a complex dynamics of challenge processing and propagation: each agent 
dealing with a challenge will normally extract some benefit from it, thus relaxing some 
aspects of the challenge, while leaving some others to be passed on to further agents. If we 
focus only on the remaining aspects, we see a mechanism of information transmission similar 
to the spreading of memes (Adar & Adamic, 2005; Heylighen, 1998; Heylighen & Chielens, 
2008): messages are communicated from agent to agent, without undergoing much change, 
until they have reached everyone that may be interested in the message. This could for 
example describe the diffusion of a particular innovation, fashion, or scientific theory.  
If we focus on the challenge aspects that are processed and thus partially relaxed, we see the 
self-organization of a workflow and division of labor (Busseniers, 2011; Heylighen, 2013): 
different agents perform different tasks that are part of a common challenge, and then pass on 
the remaining challenge to others with different skills and/or needs, up to the point where 
nothing of value is left to extract (i.e. all tasks have been done). To better understand such 
distributed processing of a challenge we need to investigate the dynamics of propagation. 
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Propagation of challenges 

A generalized concept of propagation 
The notion of challenge was introduced as a generalization of the notion of a problem that 
confronts an individual agent (Heylighen, 2012a). In contrast to the standard paradigm of 
individual problem solving, the challenge propagation paradigm investigates processes that 
involve a potentially unlimited number of agents. To deal with this, our initial focus must 
shift from the agent to the challenge itself: what interests us is how an individual challenge is 
processed by a collective of agents distributed across some abstract space or network. Instead 
of an agent traveling (searching) across a space of challenges (problem space), we will 
consider a challenge traveling (propagating) across a space of agents. This change in 
perspective is similar to the one that distinguishes memetics from traditional social science 
models of communication (Heylighen & Chielens, 2008): instead of focusing on the 
individuals communicating, memetic models focus on the information (“memes”) being 
communicated.  

In general, propagation denotes the spreading or transmission of some recognizable pattern, 
such as a wave, a species, or an idea. The movement of such a pattern has specific 
characteristics:  

• the interaction is local, as the pattern is initially transmitted only to the immediate 
neighbors of the point it originated in, who pass it on to their neighbors, and so on… 

• the pattern tends to spread outwards so as to cover an ever wider area;  

• it tends to change while spreading;  

• the pattern requires a physical medium to carry it while propagating;  

• this medium has a characteristic topology (such as a 2-dimensional surface for a wave, 
or a social network for a meme) that affects the shape and extent of the spreading; 

• the medium may have additional properties such as time lag, density, or friction that 
affect the speed of propagation as well as the changes occurring to the pattern. 

All these characteristics can be found in messages that are passed along across the Internet, or 
in activation that spreads across the brain. Since challenges are generalizations of these 
phenomena, propagation appears like the natural way to describe their dynamics.   

 
 

Stigmergic and networked propagation 
There are two basic cases of challenge propagation: stigmergy and propagation across a 
network. Stigmergy is a mechanism whereby a challenge left by an agent in some medium or 
workspace that is shared with other agents stimulates those others to further address that 
challenge (Heylighen, 2015; Parunak, 2006). For example, a paragraph added to a Wikipedia 
page by one person may incite a second person reading that page to add some extra details, a 
third one to add a reference for the new material, and a fourth one to correct a grammatical 
mistake. The reference may then be checked and more accurately formatted by a software 
agent. Here, challenges are spontaneously addressed by subsequent agents as mediated by the 
shared space (in this case the Wikipedia page).  
In this case of stigmergy, a challenge remains available in a public medium or workspace that 
all agents can access. If an agent decides to take on the challenge, it will perform some 
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actions that change the state of the challenge and then leave the modified challenge in the 
medium. At a later stage, some other agent may pick up the modified challenge, and perform 
some further work on it, again leaving the “traces” of its work in the medium, where it can 
function as a challenge for some further agent. The “workflow” from agent to agent self-
organizes, as the one leaving the challenge does not know who will pick it up later. Here, the 
changes in the challenge in a sense propagate in time, but not in space, as they remain in the 
same place.  
In the case of propagation across a social or neural network, the medium has a non-trivial 
topology that directs the workflow: an agent that has finished working on a challenge passes it 
on to one or more specific other agents that it is connected to. An example is an email 
message sent and forwarded with comments from person to person, or a “post” or “tweet” in a 
social media network that is reposted to other people. Here, a challenge moves from agent to 
agent by following the available links in the network. In this case, the topology of the network 
(which node is connected to which other nodes) fundamentally determines the propagation 
process: a challenge can move directly from agent A to agent B only if there exists a link A → 
B in the network.  

In the stigmergic case, the challenge can move from any agent X to any agent Y, without 
constraints. The only requirement is that Y should “visit” the shared medium some time after 
X deposited its modified challenge there. In the Wikipedia example, any person can modify 
any page at any stage independently of which other person has contributed to that page. An 
example of networked propagation is email, where A can pass a challenge on to B only if A 
has B’s email address, and B has enough trust in A to take on challenges from A. This 
typically only happens if A and B have a social or organizational connection.  
These are in a sense the extreme cases. What interests us here is the formulation of a more 
general theory that encompass both, as well as the ground in between them. An example of 
such a “middle ground” is an Internet “forum”, i.e. a place where discussions take place 
between a limited number of people belonging to a specific group or community. All 
members of the community can post messages (“challenges”) to the forum, read the messages 
posted by others, and react to those messages (take on the challenge). However, people not 
belonging to the community can in general not access or create such messages. The forum 
acts as a private medium for the group. This is similar to stigmergic propagation in that a 
message is propagated to anyone in the community, but similar to networked propagation in 
the sense that the message is directed only to members of the community, and to no one else. 
The Internet as a whole can be conceived as a gigantic collection of such forums, which are 
partly connected or overlapping, partly disjointed. A forum in the broadest sense can 
encompass everyone (e.g. anyone can read or write Wikipedia articles), just two people, or 
anything in between. We will use the term forum as the most general form of a “meeting 
ground” where people can exchange challenges.  

To measure the intelligence of a distributed network, we can then try to establish its capacity 
to effectively process challenges. Normally, different agents have different skills in dealing 
with challenges. A complex challenge (say, global warming) has a large number of aspects 
that require different skills. The problem now is to distribute the different challenge aspects 
across the different agents so as to make sure the challenge as a whole is dealt with 
efficiently. This is the basic problem of coordination. It includes division of labor (who deals 
with what challenge component?), workflow (where does a challenge go after it has been 
partially dealt with?), and aggregation (how are all the finished pieces of work assembled?) 
(see Fig. 3).  
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Figure 3: An illustration of coordination, in which an initial challenge is split up in separate 
activities performed by different agents (division of labor), which are followed by other 
activities (workflow), and whose results are assembled into a final result (aggregation). Grey 
circles represent individual agents performing activities. Arrows represent the propagation of 
challenges from one agent to the next. 
 

Perhaps surprisingly, such distributed coordination can self-organize relatively easily across 
the Internet, via both stigmergy (Heylighen, 2015) and networked propagation. A good 
illustration can be found in the different open source communities developing complex 
software without central supervision (Heylighen, 2007). In both cases, challenges can travel 
more or less efficiently across the network of agents and workspaces until they find an agent 
able and willing to deal with them, and then continue their journey along other agents dealing 
with the remaining aspects. This allows complex challenges to be resolved in a distributed 
manner, by harnessing the collective intelligence of the different components (human and 
technological) of the network.  

 

 

Learning in the distributed network 
In the case of networked propagation, coordination requires an additional condition, though: 
the links between the agents that define the network should be appropriate to the task of 
distributing challenges. Otherwise, challenges are likely to be passed on to agents that do not 
care about them, or that do not have the appropriate skills to deal with them. Establishing 
links is achieved via a learning process, which creates and “remembers” adequate links, while 
“forgetting” inadequate ones. 
The similarity between a distributed network of agents and a neural network suggests that the 
distributed network should be able to learn by differentially strengthening or weakening its 
links. Delta learning is a form of reinforcement learning (Woergoetter & Porr, 2008) in which 
a link is rewarded if it brings the challenge closer to relaxation, and penalized if it reduces 
relaxation. The link strength can then be increased by an amount proportional to the degree of 
relaxation (which may be negative). The interpretation of this operation is that if an agent 

workflow 

     aggregation division of 
labor 

initial challenge 
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transmits a challenge via a specific link (e.g. sends it to a friend, or posts it to a forum), and it 
observes that the challenge is adequately dealt with (e.g. the friend provides a good tip on 
tackling it, or the people on the forum collaboratively develop a solution), then the agent will 
be more inclined to use the same link in the future to transmit similar challenges. That means 
that the probability of use of the link, and therefore its weight, increases. Vice-versa, an 
unsuccessful transmission will decrease the probability of later use.  

The network does not need any sophisticated learning mechanisms to adapt in this way to its 
usage. On the one hand, links strengths will be maintained and updated in people’s individual 
memories as the degree of trust they have in the abilities of others to deal with specific 
challenges (Van Overwalle & Heylighen, 2006). On the other hand, links will be stored in the 
external memory that is provided by the worldwide ICT network. For example, links will be 
created or reinforced by such mundane activities as adding someone’s phone or email to your 
list of contacts, bookmarking a site, linking to someone on a social media network, or 
registering for some organization (and thus getting easier access to its members and 
resources). All these activities change the environment of the agent in such a way that this 
agent becomes more likely to communicate with selected other agents. Moreover, these 
changes will typically be triggered by successful interactions: you will normally note a 
person’s address if that person was interesting or friendly, join a group if they appear to be 
doing good work, and bookmark a site if it contains useful information. If later it would turn 
out that the person, group or site is no longer relevant to your interests, you will similarly 
weaken your connection with them… 
 

 

Further Research 

The challenge propagation framework as we formulated it here appears like a very promising 
approach for modeling the complex distributed processes via which problems and 
opportunities are processed in a self-organizing network. After our conceptual analysis of the 
main components of the framework, we are ready to define these components and their 
relationships in a more precise, formal manner. This would not only provide a basis for a 
mathematical model of challenge propagation, but for a simulation aimed at exploring 
different variations of the model by investigating how they affect the overall intelligence of 
the network.  
Presently, my research group is developing such a mathematical/simulation model (Heylighen 
et al., 2012), in order to investigate precisely how the distributed intelligence of the network 
increases as it selectively strengthens or weakens its links or increases its stigmergic 
capabilities. Our measure for distributed intelligence is simply the degree to which challenges 
are resolved by the networked agents as compared to the same group of agents without 
connecting medium. Our working hypothesis is that distributed intelligence increases as the 
network learns better connections, and as the number of “forums” for stigmergy increases.  

Our preliminary simulation, called ChallProp (Veitas, 2012), indeed shows such self-
organization of distributed intelligence. However, we will need many more runs with a 
variety of different parameter settings and variations on the dynamic mechanisms in order to 
achieve results that are statistically reliable and ready to be applied to more realistic 
situations. In the meantime, I hope that the present conceptual model will be sufficient to 
inspire other researchers to apply these ideas in a variety of situations that exhibit distributed 
intelligence. 
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