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BUILDING A SCIENCE 

OF COMPLEXITY

Francis HEYLIGHEN1,2

ABSTRACT. It is argued that in order to solve complex problems we need a new approach,

which is neither reductionistic nor holistic, but based on the entanglement of distinction

and connection, of disorder and order, thus defining a science of complexity. A model of

complex evolution is proposed, based on distributed variation through recombination and

mutation, and selective retention of internally stable systems. Internal stability is then

analysed through a generalized mathematical closure property. Examples of closure in

self-organizing and cognitive systems are discussed.

1. Introduction

It is a common observation that our present society is more complex than any of the

societies or cultures which preceded it. This entails that the problems this society, and the

individuals who are part of it, must confront are more complex than they ever were.

Understanding complexity seems to be the only possibility for escaping this evolution in

which everything seems to become more uncertain, more complicated and more changeful. 

In order to analyse scientifically what complexity is, we should begin by giving a

more intuitive account of what the word "complexity" denotes. First, we would call a

system "complex" it is has many  parts or elements. However, sheer quantity is not

sufficient : we would not see a brick wall as being complex, even though it is composed of

thousands of different bricks. Moreover, the way the elements are aggregated should be in

some sense disordered or unexpected, it should not be reducible to a regular, periodic

pattern, like the bricks in a wall or the molecules in a cristal. This "unexpectedness"

becomes even more apparent in the dynamics of the complex system : it we interact with

the system, or if it evolves on its own, the changes which we experience are unpredictable.

Moreover, they are in general also irreversible. We cannot control or steer the evolution of

the system. This entails a third basic feature of complex systems: the anticipation or
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management of a complex systems behaviour defines a problem which is difficult, if not

impossible, to solve.

Problems such as pollution, underdevelopment, war, diseases like AIDS, ..., are

examples of such complex situations, which are extremely difficult to cope with, because

of the quantity and irregularity of all the factors involved, which makes it practically

impossible to anticipate the effects of proposed interventions (cfr. Dörner, 1983; Dörner

& Reither, 1978; Heylighen, 1988). The only general method for solving difficult problems

we know is science. However, traditional science often seems to create more problems

than it solves. Problems such as pollution or the threath of nuclear warfare would not

exist without science and technology. Moreover science only appears capable of solving

problems in very specialised, restricted domains, while ignoring problems on the level of

the planet or of the society. 

This may be understood by observing that the domains of classical science are

chosen such as to avoid complexity as much as possible. Let us consider Newtonian

physics, which is the mother discipline defining the mechanistic paradigm, which has

influenced most of the other sciences. The objects of physics are typically modelled as

particles, as elementary systems without internal structure which obey invariant, external

laws of motion. Even when a physicist considers a planet, he sees it as a rigid, spherical

ball which moves around the sun in a trajectory determined solely by its global mass,

ignoring all chemical, biological, psychological or cultural systems which may have

developed on the planet. Of course the physicist is aware that he neglects a lot of

important phenomena when he models the planet as if it were a particle. Nevertheless, a

traditional physicist remains reductionistic : he believes that all the behaviours of all the

complex systems on the surface of the planet, be they geological or social, can be

understood through the mechanics of the elementary particles by which they are

constituted. 

One of the basic problems with this philosophy is that it entails that all apparently

complex phenomena can be reduced to combinations of fundamentally simple elements

and interactions, and that it suffices to describe these elements in sufficient detail in order

to obtain a complete and deterministic model of the complex phenomenon, which should

in principle allow to solve all problems about the phenomenon. The aim of physics can

then be formulated as a search for the most complete possible description of the most

elementary phenomena. However, the evolution of physics, first with quantum mechanics,

then with quantum field theories and now with the most recent elementary particle

theories, has shown that this search leads to models which become ever more complex. It

seems as though the more elementary the level of analysis, the larger the number of

particles and fundamental constants needed, the more complicated the structure of the

theory, and the more uncertain the predictions derived from it. Clearly something has

gone wrong with the program of constructing as complete as possible representations of

as simple as possible phenomena.

In this paper I want to argue that a quite different approach is needed in order to

understand complexity. First, you should not try to reduce complex systems to simple

elements, but try to understand complexity as an overall feature. Second, you should not

attempt to find a complete representation, but acknowledge that since a representation is
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necessarily incomplete, it is most appropriate to search for that representation which is

as simple as possible, given the problem you want to solve. Such a research philosophy

would define a new discipline : the science of complexity (cfr. Banathy, 1984; Mesjasz,

1988).

Of course this new science would not have to emerge out of nothing : there are several

approaches which have already much contributed to the analysis of complexity (cfr.

Vullierme, 1987), and which may hence be used as a basis on which a more elaborated,

integrated theory may be build. One of these approaches is formed by cybernetics and

systems theory (in practice it seems impossible to draw a boundary between the two),

whose subject is the study of the behaviour of general (complex) systems. However, what

is lacking in this approach in order to to make it a full-fledged theory of complexity is a

model of how a system, and complexity in general, may emerge out of something which is

not yet a system. Such a phenomenon might be understood with the help of some recent

concepts developed around the phenomenon of self-organization. A third strand we need

for our general science of complexity concerns the way in which complex, autonomous

beings, such as we ourselves are, may solve the problems posed by a complex

environment. Such coping with complexity demands intelligence, and this leads us to the

disciplines which have studied intelligence : cognitive science and artificial intelligence.

I shall now sketch a possible way in which the main ideas of these three approaches

may be unified. But first I must try to define complexity in a more profound way.

2. What is complexity ?

Let us go back to the original Latin word complexus, which signifies "entwined", "twisted

together". This may be interpreted in the following way: in order to have a complex you

need : 1) two or more different parts or elements; 2) these parts must in some way be

connected or knotted together, so that it is difficult to separate them. Here we find the

basic duality between parts which are at the same time distinct and connected. Clearly a

complex cannot be analysed or separated into a set of independent elements without

destroying it. Hence we must conclude that the reductionistic method cannot be used for

understanding complex entities. This accounts for the connotation of difficult, which the

word complex has received in later periods. Indeed the general rational method of

tackling problems consists in analysing the problem domain. If this domain is complex,

then by definition it will resist analysis. 

The awareness that there are phenomena which cannot be reduced to their separate

parts, has led to a philosophy which may be seen as the opposite of reductionism, and

which is called holism. This approach proposes to look at a complex phenomenon as a

whole, instead of as a collection of parts. However, this view too neglects an essential

feature of complex entities, namely that they are composed of distinguishable parts, even

though these parts may be tied together. To consider a phenomenon as a whole means

that you see it as one, i.e. as basically simple. 

In the limit the holistic position would entail that, since the universe consists of one

network of interconnected systems, any form of analysis leading to distinct objects or
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systems is to be excluded. This would imply that the only way we can gain any real

knowledge about the world would consist in mystical experiences during which the

boundaries of self and cosmos are transcended (so-called mystical union or nirvana).

Although I do not want to exclude that such experiences may be quite enriching for the

individual who undergoes them, I think it is clear that they cannot in any way constitute a

"scientific" method for solving the problems posed by the complexity of the present

world.

We must conclude then that in order to build a science of complexity we can rely

neither on the reductionistic position nor on the holistic position. The study of complexity

demands a transcendence of the holism-reductionism polarity. We need an approach

which allows to model systems which are both distinct (and hence in an abstract way

separable) and connected (and hence cannot be separated without losing part of their

original meaning). 

Perhaps the simplest way to visualize a model which would satisfy these two

seemingly contradictory requirements is to consider the (mathematical) concept of a

network. A network consists of nodes, usually represented as points, and connections

between nodes, usually represented as arcs or arrows leading from one point to another

one. The nodes can be viewed as the distinct parts of the complex network (= plexus), the

connections as the relations which braid these elements together. (Remark that inversely

the nodes can be viewed as connections, tying together the arrows, whereas the arrows

can be viewed as distinct elements.)

The reductionistic approach may now be formulated most simply as a method which

tries to eliminate as much as possible the connections, whereas the holistic approach

eliminates as much as possible the distinctions between the nodes. In this sense both

methods "reduce" a complex phenomenon to a basically simple entity (either a set of

nodes or an undifferentiated whole) by neglecting an essential part of its features.

We may now also understand why the interaction with a complex system is so

difficult. Assume that an influence is exerted on one of the parts (e.g. a node) of the

complex. Through the connections this influence will propagate to the other nodes.

However, since the nodes have distinct positions or functions in the network, each of

them will react in a different way. Moreover, without analysing the network in detail and

hence destroying it, we cannot have a complete knowledge of how each will react. This

means that in general we cannot predict how a complex system will react to any

influence, originated by the observer, by the environment or by its own dynamics.

Equivalently, we cannot retrodict or reverse its evolution either, i.e. we cannot reconstruct

its past by collecting information about its present behaviour.

This picture of complexity I just have sketched may appear too pessimistic. Indeed

we know through the practice of science that in many cases we can make predictions

which are more or less accurate. To understand this we must introduce a further concept :

order.

3. In between Order and Chaos

Complexity is often taken to be a synonym of disorder or chaos. However, I want to
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argue here that disorder alone is not sufficient to define complexity. Let us therefore

analyse what is meant by order and disorder.

The examples of order which come most easily to mind are symmetric structures, e.g.

cristal lattices. Symmetry is defined mathematically as invariance under a group of

transformations. In the same way order may generally be defined as invariance under

some set of operations or transformations (not necessarily a group). The main

characteristic of an ordered system is its (spatial or temporal) predictability. Indeed it

suffices that we know a (spatial or temporal) part of the system to which we may apply

one the invariance transformations. Because of the global invariance of the system we

know that the result of applying an operation to one part of the system will produce

another part of the same system. In this way we may reconstruct the complete system by

applying all transformations to one well-chosen part. We do not have to know the system

as a whole in order to reconstruct or predict its structure : the system is redundant. 

Let us extend this definition of order to the limit, i.e. let us try to define a maximally

ordered system. Such a system would be characterized by the fact that it would be

invariant under all imaginable transformations. Obviously, the only possible structure for

such a system would be characterized by perfect homogeneity : it should be possible to

map any part of the system to any other part without any change occurring. Moreover, it

should also have an infinite extension, because otherwise we could imagine

transformations which would map a part of the system to some element outside its

boundaries. In other words, such a perfectly ordered system would correspond to a

classical vacuum, i.e. to an infinitely extended "substance" in which no part or internal

structure at all could be distinguished. Clearly, such a system would be the opposite of

what we have called a complex system, characterized by internal differentiation.

Let us now look at the other end of the order-disorder scale. Disorder is

characterized by the absence of invariance, by the absence of (non-trivial)

transformations which would have no distinguishable effect upon the system. In the limit

this means that any part, however small, of the system must be different or independent

of any other part. An approximate example of such a system would be a perfect gas :

generally speaking the velocities of two different gas molecules will be distinct and

independent; there is no coordination whatsoever between the different molecules.

However, if we look more closely, there are invariances characterizing a gas cloud : the

movement of one gas molecule is continuous during the short time interval in which it does

not collide with other molecules; it is characterized by conservation of momentum.

Moreover, the space in between the molecules can be viewed as a classical vacuum, which

as we have seen is ordered. 

In a maximally disordered system, on the other hand, we should have particles of

any momentum appearing and disappearing at any instant in time and at any position in

space. An example of such a weird system is the vacuum as it is seen in quantum

relativistic field theories : the "quantum fluctuation of the vacuum" continuously creates

and destroys virtual particles. These particles are called virtual because they are so

unstable that it is in principle impossible to observe them. In practice this means that a

quantum vacuum cannot be distinguished by observation from a classical vacuum. This

leads me to conclude that both perfect order and perfect disorder in the limit correspond
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to emptiness, i.e. to absence of structure or differentiation, and hence to the absence of

any form of complexity.

It is clear then that in order to have complexity we need some kind of mix of order

and disorder, i.e. we need a system characterized by certain, partial invariances, which,

however, are not global or absolute (cfr. Fig. 1).

The partial invariances may be viewed as some kind of connections between parts of

the system which make these parts indistinguishable : the transformation mapping the

one part onto the other one does not result in any observable change; the parts are

assimilated or integrated. The complement of these relative invariances or assimilations,

i.e. the disorder component, can then be viewed as a variation, a distinction between

parts, so that the mapping of the one part onto the other one would result in an

unambiguous change of the overall structure; the parts are distinguished or differentiated.

 

Fig. 1 : a complex pattern, characterized by an entanglement of order (rotational

 and mirror symmetry) and disorder (randomly drawn lines). 

4. The dynamics of complexity

A following step in the analysis of complexity should be an examination of how a

complex system evolves, how it changes in time. The limited invariance we have

postulated does not only apply to spatial or geometrical transformations but also to

temporal or dynamical transformations. This means that certain "parts" or structures of

the complex will be conserved during a given time evolution, whereas other ones will

change. Until now this description sounds rather trivial : part of the system changes, part

of it does not change. In order to have an interesting theory we should need some method
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for determining which of the subsystems will change, and which will not. I will try to

show that such a criterion may be derived by reformulating this apparently trivial

proposition. 

Complex evolution according to the present view is characterized by an inextricable

entanglement of disorder or variation, and order or invariance. Assume that we have a

substructure of the complex which is relatively invariant, i.e. a (large) set of

transformations does not affect it. This means that as long as the processes inside the

complex belong to this category of transformations the substructure will remain. In other

words the larger the class of transformations the more stable the substructure.

Substructures which have a smaller set of invariance transformations will change more

rapidly, they will survive during a shorter period. The more stable substructures are hence

in some way selected : they survive while the other ones disappear. Hence we may

reformulate complex evolution in the same way as Darwinian evolution in biology : on the

one hand there is variation which continuously creates new structures, on the other hand

there is some form of "natural" selection which weeds out the unstable structures and

retains the stable ones. 

But who carries out the selection? In biological evolution, the selecting agent is

considered to be the environment which demands a certain form of adaptation of the

system, otherwise the system cannot survive. If we study complexity in general, however,

without making any a priori distinction between an organism and its external

environment, we cannot use such a criterion. The distinction between subsystem which

tries to survive and the environment which may allow or hinder this survival is itself only

one feature of the complex system considered as a whole. Speaking about survival of one

subsystem within the larger whole entails that we have some way to recognize such an

invariant subsystem within the evolving complex. In other words the stable subsystem

must be distinguishable as an individual, it must have an identity. The variation-selection

dynamics is really a principle about the relative invariance of distinctions within a

complex.

Let us then elaborate the principle of variation and selective retention from this point

of view. By definition a complex consists of distinguishable substructures which undergo

variation. Since the variation is not absolute or complete (otherwise we would be in the

situation of the quantum vacuum) these substructures will have a minimal invariance or

stability. This means that they will not change all at the same time : there is some form of

inertia or continuity which limits change. This allows us to concentrate on one

substructure and to consider it as having a stable identity (i.e. distinction) during a

limited (perhaps infinitesimal) time interval. What may then change during this interval?

Either the relation or connection between this substructure and the other ones in the

complex changes, or the internal organization (i.e. the relation between its parts) of the

substructure changes. The first process may be called (re)combination of substructures, the

second one mutation of the individual substructure. 

These processes may be illustrated by the genetic variation processes inside

biological systems : consider a chromosome as an example of a stable substructure;

recombination then corresponds to the process by which a chromosome is separated from

the one it forms a pair with, in order to be coupled again with a chromosome of another
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organism during sexual reproduction; mutation corresponds to the changing of one or

more individual genes within an invariant chromosome.

The usefulness of this distinction between recombination and mutation resides in the

fact that these processes can in general be separated : they happen on a different time

scale, and have effects on different levels of the complex. If the substructure is

intrinsically very stable, then the process of mutation will be very rare or unlikely,

whereas the process of recombination may happen continuously without affecting the

survival of the substructure.

Both processes however lead to variation which in turn may lead to new, selectively

retained substructures. In the case of recombination these new structures will appear on

the level of the larger system of which the original substructure forms only a part. In the

case of mutation the new structures will themselves be parts of the original substructure.

Both processes may have an effect on the further maintenance of the original substructure.

What we need now is a general stability criterion which would allow us to predict

whether a new structure created by variation would be likely to survive. As we already

remarked such a criterion should not depend on a mysterious, because external,

environment : it should be internal to the evolving complex itself. In the remainder of this

text I will introduce the concept of closure, which allows us to define such a criterion.

Consider now a complex whole consisting of a large number of substructures which

are partly evolving in parallel with each other, partly overlapping, partly in part-whole

relations with each other. The emergence of new stable substructures (in general at

different levels) in this complex can be seen as the development of a new internal

organization. This development is not determined by an external agent or environment,

but only by the internal variation processes and selection criteria. It hence corresponds to

what is called self-organization. 

Remark that this evolution will in general lead to more complexity. Indeed, assume

that the system is originally relatively simple, i.e. there are few distinct and invariant

structures. By selective stabilization invariant structures may emerge. These stable

structures will now themselves form building blocks which by combination may give rise

to higher-order stable structures. These higher-order structures themselves may then form

the building blocks for even higher-order structures. The process of constructing invariant

structures by stabilization of specific combinations of already stabilized substructures is

indeed a recursive process, which is unlimited in its power to engender ever more complex

structures. This recursivity argument is comparable to Simon's (1962) explanation for the

hierarchical organization of spontaneously evolved complex systems.

5. Cognition as adaptation to complexity

In order to explain cognition we must start from a factorization of complexity into an

autonomous system and its environment. An autonomous system is a stable substructure,

whose stability is not only due to its internal stability (i.e. the invariance of the system

under its internal processes or transformations), but also to its capability of actively

resisting external perturbations. Consider for example a stone as a system which its
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stable due to the rigidity of its internal, cristalline structure. This structure is strong

enough to resist most outside influences, e.g. pressure or temperature change, the force of

gravitation, etc. However, if the externally applied influence is strong enough (e.g. heating

to 8000 ° C), the structure will be destroyed automatically. 

q A biological organism, on the other hand, may be less rigid, but more adaptive, in the

sense that it will change its internal functioning in such a way that external perturbations

are compensated. The eventual destruction of the system is not automatical but depends

on the capability of adaptation, of counteracting external influences by internal changes.

A system which can thus maintain its identity by active adaptation may be called

autonomous (cfr. Heylighen, 1989).

This adaptive capability depends on two things : 1) the system must dispose of a set

of adequate responses or actions, which can eliminate a large variety of perturbations; 2)

the system must be able to choose that combination of actions in the set which is

appropriate for the given perturbation. We will assume that the primitive actions needed

for (1) are given, are determined by the systems physical structure (which in the case of

biological systems is determined during evolution). We then remain with problem (2),

which, however, is far from trivial. 

Even when the set of primitive actions is quite small, the set of possible adaptive

behaviours (defined as sequential or parallel combinations of primitive actions) is in

general infinite. (this may be compared to linguistic competence : although the set of

words and grammatical rules in a language is finite, the set of all possible grammatical

sentences is infinite.) By going from primitive actions to action combinations not only the

amount of possible choices grows drastically, also the potential power increases

dramatically. For example, although the primitive actions a human being is capable of

(e.g. walking, talking, grasping, ...) are rather unimpressive, one individual, by producing a

specific combination of such actions, may create a situation in which he can destroy the

world by pushing a button (and thus starting a nuclear war).

It is clear then that the problem of choosing an appropriate combination of actions is

very complex. In order to make such a choice the autonomous system (or actor) must

dispose of a special kind a competence : it must know which effects a given

environmental perturbation or internally selected action complex will have. This

knowledge can be modeled as a complex structure : a cognitive system. 

The effects of a combination of actions will of course depend on the structure of the

environment, and so the more complex the environment, the more complex the knowledge

the actor needs. Indeed the more distinct perturbations the environment can generate, the

larger the variety of distinct action complexes the system must be able to respond with.

This is just a paraphrase of Ashby's "Law of requisite variety".

 However, we must also be aware of another basic requirement : in general a

perturbation must be counteracted within a relatively short time, otherwise the system

may be destroyed before it has taken the apppropriate action. In order to find the

appropriate action the system must somehow carry out a search through the space of all

possible action complexes. Since, as we have argued, this space is generally infinite, the

search process may take a very long time. The only general method to restrict the

expected duration of the search consists in keeping the structure of this space as simple

as possible, so that the number of alternatives to be explored at each decision point in the

- 9 -



Francis Heylighen

search graph, and the expected number of decision points would be minimal. In other

words the variety of distinct alternatives and of distinct decision steps should be

minimal. We may conclude that the cognitive system should be of minimal complexity. In

practice this means that the cognitive system should be less complex than the

environment whose changes it tries to anticipate (Heylighen, 1987). 

Synthesizing the two arguments we may conclude that the cognitive system an actor

needs for finding the appropriate responses to the environmental perturbations must be

minimally, yet sufficiently complex. This means that the cognitive system will consist of

distinct yet connected parts, such that the number of distinctions is on the one hand large

enough for coping with the variety of possible perturbations, on the other hand as small

as possible.

Let us now analyse how such a cognitive system might develop. Like all complex

systems its evolution may be seen as self-organization, based on a distributed variation-

and-selection process. The difference with an ordinary complex system, however, is that

the selection should pick up structures which are not only intrinsically stable, but whose

overall organization should be as simple as possible, given the variety of perturbations

they must be able to cope with. In other words the cognitive selection criteria should

restrict the amount of internal details, within the given constraints. These constraints are

determined by the stimuli the system receives from the environment and by the

vulnerability of the actor with respect to the environmental perturbations. This means

that the system should only distinguish between patterns of stimuli if this distinction

would have an effect on its overall vulnerability, i.e. on its chances for long-term survival.

In other words two patterns should be distinguished if they would correspond to

different perturbations, or would induce different actions for coping with perturbations.

The interpretation of patterns in terms of future perturbations or actions entails that these

patterns would correspond to phenomena with a minimal stability. Hence the cognitive

distinctions should be such that they allow to recognize relatively invariant patterns. This

gives us more information about an eventual cognitive selection criterion. We will now

propose a fundamental concept : closure, and argue that it provides a basis for

constructing general selection criteria for the evolution of complex systems, as well general

as cognitive systems.

6. Closure as an internal invariance criterion

Closure is a well-known concept in systems theory : a system is called closed if it does

not interact with its environment, if it has no input or output. Clearly, a closed system

thus defined is not a very realistic thing : all systems somehow interact with other

systems, otherwise we would not be able to observe them and it would be as if they did

not exist at all. Moreover, our definition of complexity excludes systems which are not

connected in some way to other systems. Yet closure is a very useful concept because it

allows to simplify descriptions. Therefore we will try to propose a more general definition

of closure, inspired by mathematics, which would still be useful for modelling complexity.

This concept would also be a generalization of the concept of "organizational closure"

used by Maturana and Varela (1980; Varela, 1979).
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The basic idea is that only certain classes of interactions would be excluded, but not

all of them. According to the variation-selection dynamics, the interactions which should

be excluded are those which prohibit the further existence of the system, which destroy its

invariance. As we have noted earlier, we are primarily interested in internally determined

invariance, i.e. by selection carried out by the system itself, not by its environment. 

The first question we should ask is : what should remain invariant? Clearly it is not

realistic to require that any part or feature of a system, any of its elements, attributes and

relations, be conserved during evolution. Complex systems do undergo changes, yet

somehow they may maintain their identity. It is this "identity" which should remain

invariant. This identity can in general be defined as a distinction between the system or

structure, and all those other phenomena which do not form part of the system. So we are

looking for invariant distinctions. This means that we need a set of transformations or

operations which would map the distinction upon itself, while possibly changing other

features of the system or its environment. These transformations should be internally

determined, belong to the internal dynamics of the system. Let us then advance a general

definition : 

a system is closed if all the transformations arising from its internal organization are such that

they map the distinction (or set of distinctions) defining the identity of the system upon itself.

The traditional illustration of an identity determining distinction is a topological

boundary, which separates the inside elements from the external ones. However, the

definition allows much more general distinctions. For example, the geometry of space can

be considered as a mathematical system, containing a set of symmetry transformations

(e.g. translations and rotations) which keep invariant a certain number of defining

distinctions, for example the dimensionality of space. In other words the distinction

between one dimension and the other ones is mapped upon itself by the transformations

contained in a geometrical system. 

Another example might be the causal structure of relativistic space-time, determining

the distinction between slower-than-light and faster-than-light connections between

events and thus the partial order structure of time, which is invariant under Lorentz

transformations. Hence even time itself may be considered as a closed system, defined by

the invariant distinction between future and past.

In order to clarify the significance of these rather abstract examples we should try to

understand in more detail what is meant by a system and the transformations contained

in it. A system can in general be defined as a relation between an input set and an output

set (Mesarovic and Takahara, 1975), it "maps" in a certain sense inputs to output. Hence

a system itself may be considered as a transformation. The transformations "contained"

in a system are then simply its subsystems. The notion of transformation as we use it

here, however, is more than purely dynamical. The transformation might be an abstract

relation between variables, without representing a "process", characterized by time or

duration. 

Let us consider another, more concrete example : a cristal. A cristal is characterized

by its symmetrical structure, i.e. by the invariance of the pattern of connections between
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its elements (molecules) under a certain group of translations and rotations. These

transformations do not correspond to actual physical processes happening inside the

cristal, but to spatial relations between molecules, e.g. the relation between a molecule

and the one which is immediately left of it. This relation, however, has a physical meaning

: it corresponds to a chemical bond between molecules, which forms a rigid connection. It

is just the presence of such a "symmetrical" set of relations which makes the cristal a

stable structure, compared with a random assembly of molecules.

You may have noticed that all the examples of closed systems of transformations or

relations considered until now correspond to mathematical "groups", i.e. algebraic

systems characterized by associativity, internality of composition and the existence of

identity and inverse elements. The property of closure is more general than that, however,

although a group is a very good example of a closed system, because it combines several

elementary closure properties. Let us look at them one by one. 

The most basic perhaps is the internality of composition: this means that any two

transformations or relations of the system may be sequentially composed, so that they

form a third transformation which is still part of the original system. In other words the

system is invariant under the composition of transformations. This basic type of closure

may be called transitive or recursive closure. If we make the set-theoretic union of all the

relations in the system then the resulting relation must be transitive. 

Another fundamental closure is implied by the existence of symmetrical or inverse

transformations. This means that the system is invariant under the inversion of

transformations.  In practice it signifies that if you apply a transformation to an element,

you may always reverse the effect of this transformation by applying the inverse

transformation to the resulting element, thus going back to the original element. This may

be called symmetric closure. It is a special case of a more general type of closure : cyclic

or circular closure, which states that any sequence of transformations may be inversed by

applying another specific sequence of transformations to its result, so that the

concatenation of both sequences defines a "cyclic" path (without thereby assuming that

each individual transformation would have an individual inverse). 

Implicit in the concept of a group is the idea that a transformation would correspond

to a bijective mapping, i.e. a relation which is one-to-one. However, in general a relation

may also be many-to-one, one-to-many or many-to-many. The restriction of a many-to-

many  relation to a many-to-one (i.e. surjective) relation (or equivalently, to a one-to-

many  relation) can again be understood as a closure of the relational system. Indeed, a

many-to-one relation R is characterized by the fact that the composition of the relation

with its inverse  R-1  gives an identity : 

R[ R-1 [ a]] = a, for all a. 

Equivalently for one-to-many :  

 R-1[ R [ a]] = a, for all a. 

In the case of a one-to-one relation, both properties apply. Hence the initial input or
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output elements to which the relations are applied are invariant under the

transformations  R o R-1  and/or  R-1 o R, and hence may be considered to form a "closed"

system. A one-to-one mapping may be characterized by the fact that it conserves all the

distinctions between elements: distinct elements are sent upon distinct elements. These

properties may be called respectively surjective (many-to-one), inverse surjective (one-to-

many) and bijective (one-to-one) closures.

We have thus defined four basic types of closures : transitive, cyclic, surjective and

inverse surjective. (bijective and symmetric closures are special cases of these general

classes). The fact that these closures are really fundamental can be understood by looking

at a very simple diagram consisting of two connected arrows representing two relations or

transformations. Closure may then be represented by the addition of a third arrow, so

that the resulting diagram is "closed". One can easily see that there are four inequivalent

ways in which such a three-arrow diagram may be closed, leading to the four types of

closures defined above (Fig. 2 and 3). 

In the first two diagrams (Fig. 2) the two original arrows (in plain line) are

sequentially connected, i.e. such that, with respect to their common node, one is ingoing,

the other one is outgoing. The third arrow (in dashed line) which is added for closure can

be oriented in two ways: either in continuation of the sequence of two arrows, thus

leading back to the starting node (first drawing, cyclical closure) or in parallel with the

sequence (second drawing, transitive closure). In the second two diagrams (Fig. 3) the two

original arrows are connected in parallel. Because of the overall symmetry this means that

the connection to be added for closure must be non-oriented (arrows in both directions).

Such a symmetric connection can be interpreted as an equivalence relation, leading to the

identication of the two connected nodes, so that they are no longer individually

distinguished but only as a collection. The result is that also the original arrows are no

longer distinguished, so that the relation formed by theses arrows becomes inverse

surjective (one-to-many), respectively surjective (many-to-one).

Fig. 2 : a cyclic, respectively a transitive closure of a 2-arrow graph
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Fig. 3 : an inverse surjective, respectively a surjective closure of a 2-arrow graph.

We may add one more remark here : if we would use a four arrow diagram we could

see transitive closure as related to what might be called commutative closure, requiring

that the composition of two transformations be invariant under the permutation of the

order in which the transformations are composed.

7. Some examples of complexes generated through closure

Let us sketch how closure could help us to understand the self-organization of a complex

system. Any system can be viewed as a collection of interacting subsystems. These

subsystems can be modelled as input-output relations. The interaction between these

subsystems leads to the (re)combination of subsystems in temporary assemblies through

variation. The coupling of the subsystems within an assembly may be understood in the

following way : two subsystems A and B are coupled in sequence if the output of A is

used as input by B; they are coupled in parallel if they use or produce the same input

and/or output. Suppose now that the assembly of systems-relations is characterized by

some form of closure. We may then hypothesize that the assembly would gain some form

of internal stability and hence could be selected for survival. The assembly would then

form a new, higher-order subsystem which could again be used as a building block for

new recombination processes, which may again lead to closures. 

It is clear that this provisional description is to be worked out in much more detail if

we wish to construct a general, mathematical theory of complexity. This is work for the

future. For the moment it will suffice to consider several examples of self-organizing

processes, thus showing that closure can help us to understand their emerging structures. 

In the case of cristal formation the subsystems might correspond to the relations of

attraction between couples of molecules. Closure then sets in when by diffusion of the

molecules these relations are able to form a symmetric pattern. 

An example of self-organization where the creation of new distinctions is very clear

is the formation of cracks in a previously smooth, homogeneous surface (see fig. 4). This

phenomenon can be observed in the patterns formed by drying mud, or old paint on a

wall. A crack can be seen as a local distinction,  locally separating the two sides of the

crack. Yet this distinction is in general not global or invariant : at the edges of the crack

the separated sides come back together. However the distinction becomes invariant if the
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crack closes in on itself, so that one side becomes separated from the other side, leading

to an "inside" and "outside", distinguished by a closed boundary.

Fig. 4 : a complex pattern formed by cracks in a smooth surface.

Thermodynamical self-organization is usually modelled through the concept of

"attractors" (Prigogine, 1979; Nicolis & Prigogine, 1986; cfr. also Kauffman, 1984). An

attractor is set of states of a dynamical system such that if the system is in a state

belonging to the attractor, then it will remain within this attractor. An attractor can in

general be seen as a cyclically closed system of processes. This is understood most easily

by looking at point attractors or one-dimensional attractors (limit cycles), where the

system comes periodically back to its inital state. However, the closure of an assembly of

processes does not necessarily require that there be an invariant periodically recurrent

state : it suffices that there be an invariant distinction. This distinction corresponds to

that between processes inside the attractor set (which by definition cannot get out) and

processes outside. This allows us to understand multi-dimensional and even strange or

chaotic attractors as closed systems. 

Another example of a structure which appears to be typical for self-organizing

complex systems is that exhibited by fractals or self-similar patterns (Mandelbrot, 1982).

The recurrence of the same form at different levels can be understood as the result of the

recursive coupling of one or a few primitive processes. This is an example of a transitive

closure. 

Yet another basic structure which is found again and again in naturally developed

(and even artificially designed) complexes is hierarchy (Simon, 1962). This may be

modelled mathematically by a tree structure, which can be seen as a network of

surjectively (or equivalently : inverse surjectively) closed relations. The growth of plants

shows that tree structures need not be abstract : even the concrete, visible world around

us is filled with them.

This brings us to the organization of biological systems. A living system can in
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general be defined by its autopoietic organization : it consists of a network of processes

which produces itself (cfr. Maturana and Varela, 1980; Varela, 1979). The typical

example of this circular organization is the cycle through which the DNA in a living cell

produces enzymes which themselves steer the production of new DNA, which again

produces enzymes, ... This is obviously an example of a cyclical closure.

Autopoietic systems have the capability of cognition, and this brings us to the self-

organization of cognitive systems. 

8. Closure and cognitive structuration

As we have said, an autonomous system should be able to reconstruct the stable

distinctions relevant for its survival out of the stimuli it receives; in other words, it must

be able to extract meaningful (i.e. invariant and relevant) patterns out of the scattered

stimuli (e.g. electrical impulses generated by light falling in upon the optical nerve). 

This process has been studied by Gestalt psychology (Stadler & Kruse, 1989).

Patterns which are perceived can be characterized as Gestalts, i.e. as coherent wholes,

distinguished from their background. The qualities which make up a Gestalt can again be

interpreted as closure properties, e.g. symmetry, continuity, invariance.

 It must be emphasized that the closure which is perceived is not in the stimuli

themselves, which are basically discrete or separate. The cognitive system "closes" the

pattern by filling in the missing elements (Stadler & Kruse, 1989). For example, a set of

dots arranged in the form of a triangle will generally be seen as a continuous figure, not as

a collection of separate elements. In the same way the disappearance of a moving object

behind a screen followed shortly thereafter by the appearance of a moving object at the

other end of the screen will be automatically interpreted as a continuous movement of one

and the same object, even though behind the screen the object might have been destroyed

and replaced by a similar object. The cognitive system of the observer will again fill in the

missing movement behind the screen and thus "close" the trajectory of the supposedly

invariant object.

These examples show us that cognitive structures should not be seen as simple

mappings of external physical structures by means of the sense organs. The physical

stimuli merely "trigger" internal processes of self-organization characterized by closure.

The meaning of the stimuli is really "constructed" inside the cognitive system. It is a well-

known phenomenon in the psychology of perception that the same physical pattern of

stimuli may be closed or interpreted in different, incompatible ways, and that this

interpretation may shift in an abrupt manner, leading to the phenomenon of "Gestalt

switches". 

This phenomenon is analogous to the incompatibility of different modes of

observation in quantum mechanics. For example the same electron may be seen either as a

wave or as a particle. The observability of properties in quantum mechanics may again be

modelled by a closure operation: orthogonal closure (see Heylighen, 1987) (this is an

example of a surjective closure of a relation which is symmetric but not transitive).

The fact that the same entity can be perceived or modelled in incompatible ways is

an argument against the idea that cognitive systems or internal representations may be
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modelled as homomorphic images of an "external reality". Even though there is a relation

between environment and cognitive system, this relation is neither an isomorphism nor a

homomorphism, it is not even a function. We may conclude that the closures inside the

cognitive system do not necessarily correspond to the closures in the environment. 

In order to be adaptive the cognitive system must of course provide as much

"coherence" as possible between anticipations and perceptions, and thus it would be

useful if there were some form of correspondence. However, this correspondence is

necessarily incomplete since the invariant distinctions the actor needs for his survival are

infinitely smaller in number than the invariant distinctions in the environment, because of

the reduction of complexity needed for adequate problem-solving. Moreover these

cognitive distinctions are basically subjective since their function consists in enhancing the

actor's chances for individual survival. Hence it is natural  that a cognitive system would

make distinctions (by closing internal patterns) which do not correspond to any external,

invariant closures, but whose only aim is to reduce the complexity of the problems posed

by survival. For example, an actor will in general make a distinction between "good"

events and "bad" events, although there is not any external, invariant counterpart of the

class of all good things (such a class corresponds again to the "orthogonal" closure

(Heylighen,1987) of a set of events : the class of all good events is equal to the class of all

events which are not bad, i.e which are not "not good").

We may conclude that both the cognitive structuration of a complex pattern of

stimuli and the structuration through self-organization of the physical system, which has

caused these stimuli, can be understood with the help of the same basic principles of

variation and closure. However we must note that the parallellism of these two self-

organization processes does not lead to a global isomorphism or homomorphism of the

resulting structures. The exact relation between the cognitive system and the physical

system it models is itself quite complex. A further elaboration of the present model of

complexity may help us to gain a deeper understanding of this extremely important

phenomenon.

9. Conclusion

We have argued that in order to understand the complex problems of present-day society

we need a fundamentally new approach, which would replace the reductionistic method

of analysis characterizing classical science. Such an approach, leading to what was called

"the science of complexity", would aim to provide simple and relevant, though in principle

incomplete, models of complex phenomena. It would emerge out of a synthesis of

concepts developed around systems theory, cybernetics, self-organization models and the

cognitive sciences. 

We then examined a possible way to unify these concept by an in-depth analysis of

complexity as an entanglement of on the one hand distinction, differentiation, variety,

change, disorder, and on the other hand connection, integration, selection, invariance and

order. It was shown that in order to have complexity, or even structure at all, both

components, ordered and disordered, are necessary. The emergence and evolution of
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complex structures could then be understood as an interaction between these two

components. The general process may be described as variation through recombination

and mutation of (relatively stable) component systems, combined with the selective

retention of invariant assemblies, thus forming higher-order stable systems. In contrast

with biological variation-and-selection theories, however, we wanted to understand

selective stabilization by the intrinsic organization of the assembly to be selected, not by

the effect of an outside environment. 

In order to model such internal stability we introduced a generalized concept of

"closure". This may be understood by seeing an assembly as a collection of coupled

subsystems, represented mathematically by relations or transformations. The assembly

would then be closed if the coupling were such that some distinction, defining the identity

of the system, would be invariant under the (sequential and parallel) application of the

internal transformations. Four elementary types of closure were defined mathematically :

transitive, cyclic, surjective and inverse surjective closure. 

It was then hypothesized that all stable structures emerging through self-organization

could be characterized by a specific combination of such elementary closures. Although

this proposition could not be proven in the present stage of the research, it was lent some

credibility by examining several examples of typical patterns of self-organization in which

"closed" structures could be recognized.

It was also proposed that cognition is a process of internal self-organization whose

function is to allow an actor to adapt to a complex environment by choosing appropriate

action complexes. This process too can be analysed with the aid of the closure concept.

However, the parallellism of internal, cognitive and external, physical self-organization is

much more complex than it would appear to the naive observer, since there is in general

no simple correspondence between internal and external distinctions. Cognitive

distinctions are internally constructed with the aim of reducing subjective problem

complexity, not with the aim of providing an objective picture of "reality".

This last assertion already points to the possibility of application of the emerging

science of complexity. Indeed, a general theory of the dynamics and stabilization of

distinctions based on the closure concept could help us to to solve our own complex

problems. Practically such an application could be implemented as a computer-based

support system (cfr. de Zeeuw, 1985), which would help actors to structure their

problems, ideas and information, by recombination and closure of simple components.

One example of an already functioning (and successful) medium for problem solving,

based on algorithms for the variation and selection of simple rules (yet without explicit

closure), is formed by "classifier systems" (Holland et al., 1986). Other existing computer

supports are characterized by the fact that it is the user who introduces the variation,

although the system helps him with the recombination and conceptual closure of his

ideas. Examples of this type are : outliners (e.g. MORE or ThinkTank), hypermedia,

conversational systems (Pask and Gregory, 1986), and a system like DEDUC (Bossel et

al., 1982).

One of the challenges of a general theory of complexity based on the closure concept

would then consist in the design of a a support system which would be more universal

and more efficient than these existing applications.
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