This is chapter 4 of the "The Phenomenon of Science" by Valentin F. Turchin 


Contents:


CHAPTER FOUR.
THE HUMAN BEING

CONTROL OF ASSOCIATING

WE HAVE COME to the most exciting moment in the history of life on earth, the appearance of the thinking being, the human being. The logic of our narrative compels us to link the appearance of thought with the next metasystem transition. We still know so little about the process of thinking and the structure of the thinking brain that any theory claiming to explain this phenomenon as a whole is hypothetical. Thus, our conception of thinking must also be treated as a hypothesis. However, this conception indicates the place of thinking in the series of natural phenomena and, as we shall see, puts a vast multitude of facts together in a system. The complete absence of particular, arbitrary assumptions, which ordinarily must be made when a theory includes a structural description of a little-studied object, is another positive feature. The core of our conception is not some hypothesis regarding the concrete structure and working mechanism of the brain, but rather a selection of those functional concepts through which a consistent and sufficiently convincing explanation of the facts we know about thinking becomes possible.

Thus, we assert that the appearance of thinking beings, which marks the beginning of a new stage--perhaps a new era--in evolution (the era of reason) is nothing short of the next metasystem transition, which occurs according to the formula control of associating = thinking.  

To prove this assertion we shall analyze the consequences that follow from control of associating and equate them with the forms of behavior we observe in thinking beings.

First of all. what is control of associating? Representations X and Y are associated in an animal only when they appear together in its experience. If they do not appear together (as a rule, on many occasions), the association will not arise. The animal is not free to control its associations; it has only those which the environment imposes on it. To control associating a mechanism must be present in the brain which makes it possible to associate any two or several representations that have no tendency at all to be encountered together in experience--in other words, an arbitrary association not imposed by the environment.

This action would appear to be completely meaningless. An elder tree in the garden and an uncle in Kiev--why connect these two totally unrelated facts? Nonetheless, arbitrary associating has profound meaning. It really would be meaningless if brain activity amounted to nothing more than passively receiving impressions, sorting them, grouping them, and so on. But the brain also has another function--its basic one: to control the organism, carrying out active behavior which changes the environment and creates new experience. You can bet that the alarm clock and the holder for the teapot are in no way associated in your consciousness. Nor in the consciousness of your three-year-old son. However, this is only for a certain time. One fine day, for some reason an association between these two objects occurs in the head of the young citizen and he is overcome by an insurmountable desire to rap the alarm clock with the holder. As a result, the objects enter a state of real, physical interaction.

In the metasystem transition, some thing that was once fixed and uniquely determined by external conditions becomes variable and subject to the action of the trial and error method. Control of associating, like every metasystem transition, is a revolutionary step of the highest order directed against slavish obedience by the organism to environmental dictatorship. As is always true in the trial and error method, only a small proportion of the arbitrary associations prove useful and are reinforced, but these are associations which could not have arisen directly under the influence of the environment. And they are what permits a reasoning being those forms of behavior which are inaccessible to the animal that was frozen in the preceding stage.

 

PLAY

HIGHER ANIMALS reveal one interesting form of behavior, play, which relates them to human beings and is a kind of herald of the era of reason. We are not referring to behavior related to mating (which is also called play sometimes), but rather to ''pure'' and, by appearance, completely purposeless play--play for pleasure. That is how a cat plays with a piece of paper, and how the young (and the adults) of all mammals play with one another.

 But what is play? How does this phenomenon arise in the animal world? Play is usually explained as a result of the need to exercise the muscles and nervous system, and it certainly is useful for this purpose. But it is not enough to point out the usefulness of a form of behavior; we still must explain how it becomes possible. When a kitten plays with a piece of paper tied to a string it behaves as if it thinks the paper is prey. But we would underestimate the mental capabilities of the kitten if we supposed that it was actually deceived--it is not. It has caught this paper many times, bitten it, and smelled its offensive, inedible odor. The kitten's representation of the paper is not included in the concept of ''prey.'' However, this representation partially activates the very same plan of action normally activated by the concept of ''prey." Similarly, a wolf frolicking with another wolf does not take its playmate for an enemy, but up to a certain point it behaves exactly as if it did. This is the very essence of play. It can be understood as the arbitrary establishment of an association between two objects such as the paper and the prey or the fellow wolf and the enemy. As a result there arises a new representation which, strictly speaking, has no equivalent in reality. We call it a ''fantasy,'' the result of ''imagination.'' Thus the paper plainly is not prey, but at the same time seems to be prey; thus fellow wolf is simultaneously friend and enemy. The synthetic representation generates a synthetic plan of action--a play plan. The wolf is completely serious and tries as hard as it can to overtake and catch its friend, but when it bites it is no longer serious.

Indeed, play exercises the muscles and develops skills which are useful during serious activities, but this impresses one more as a useful side effect than as a special strategic goal for whose sake play forms of behavior are developed. Everyone knows how children love to play, but what is attractive in their play is not so much the pleasure gained from physical exercise or showing one's agility as it is the game as such. When boys play soldiers and girls play dolls they are not exercising anything except their imagination--that is, their ability to make arbitrary associations. It is these arbitrary associations which give them pleasure. Children's play is a phase of development through which every person must inevitably pass in order to become a person. In his remarkable book From Two to Five, K. Chukovsky devotes many pages to developing the idea of the absolute necessity for elements of play and fantasy in a child's upbringing. Children cannot get along without these things. They give themselves up to play completely, feeling it to be something needed, important, and serious.

 K. Chukovsky writes:

 

 

The apparatus for controlling associations first announces its existence through the need for play. And because it exists it must work: it needs something to do. This is just as natural as the lungs needing air and the stomach food.

 

MAKING TOOLS

BUT LET US leave play behind and pass on to the serious acts of serious adult people. When speaking of the origins of human beings the use and manufacture of tools are pointed out as the first difference between humans and animals. The decisive factor here is, of course, making the tools. Animals can also use objects as tools. The woodpecker finch of the Galapagos Islands uses a spine of cactus or small chip to pick worms out of the bark of a tree. No one who has seen pictures of the skillful way the finch manages the spike held in its beak can fail to agree that this is a clear and very artful use of a tool. The California sea otter lies on its back on the surface of the water, places a flat rock on its chest, and breaks mussels open with it. Monkeys sometimes use sticks and stones. These are very meager examples, but they show that in principle there is nothing impossible in animals using tools. In fact, why can't a plan of action passed on by heredity and reinforced by learning include the selection and use of certain types of objects? Concepts such as "long and sharp" or ''round and heavy'' are fully accessible to animals. It is obvious that examples such as those given above are rare, because the tools that can be received from nature without special manufacture are very imperfect and in the process of evolution animals have greater success using and refining their natural organs: beaks, claws, and teeth. If the use of tools is to become the rule, not the exception, it is necessary to be able to make them or at least to be able to find suitable objects especially for the particular case.

Suppose that you have to drive a nail but do not have a hammer handy. You look around, seeking a suitable object and spot a bronze bust of Napoleon on the table. You have never before had to drive nails with Napoleons. We can even assume that you have never before driven nails with anything but a real hammer. This will not prevent you from taking the bust and driving the nail. You did not have the association ''nail = bust," you created it. In your imagination you compared the nail and the bust of Napoleon, pictured how you could drive the nail with him, and then did so.

 

IMAGINATION, PLANNING, OVERCOMING INSTINCT

IF IN THE BRAIN of the animal there is an association between object X, a tool, and object Y, the object of the action (and, of course, if it is physically possible to execute the action), the animal will be capable of using the tool. But if there is no such association, the animal does not ''guess'' that it should do this. A dog may be trained to drag bench X in its teeth to fence Y, climb up on the bench, and jump from it over the fence, but if it is not taught this it will not figure it out with its own mind. The dog knows very well that the bench can be moved from place to place. It also knows what opportunities open up when the bench is next to the fence; if you put the bench there it will immediately jump up on it and leap over the fence (assuming that there is some need for it to do so). This means that it is able to foresee the result of the combination of X and Y; it has the corresponding model in its brain. But this model is just dead weight, because the dog cannot picture to itself the combination XY as a goal to strive toward; it does not have the imagination for this. It is not enough to know what will be, one must also imagine what can be. The bare formula which equates thinking with control of associating may be translated into less precise but more figurative language by stating that the human being differs from the animal by the possession of imagination.

Let us construct a very simple model of the working of imagination, using A to designate the situation occuring at a given moment and Z for the situation to be achieved. We shall consider that for the given situation only some other situations are immediately achievable. This will be written by the formula:

  A -> (B, C, H, Z)  

where situations immediately achievable from A are shown in parentheses.

Let us assume that a certain animal (or person) knows which situations are achievable from which others--that is, in its brain there is a series of associations that can be represented in formulas resembling the one above. We shall also consider that for each transition from the given situation to another, directly achievable, one the action which executes it is known. We shall not introduce designations for this, however, so as not to clutter up the formula.

 If the brain does possess the exact association shown above, and therefore state Z is achievable from A, the animal will immediately execute the necessary action. Now let us suppose that the brain contains the following group of associations:

In this table there is no action which would switch A to Z, and therefore the animal given this problem will not be able to solve it. It will either do nothing or flounder in confusion, executing all the actions in the table without any order. But the human being will imagine that he has performed action A in order to understand what situations will become accessible to him in this case. In other words, he will create new associations, which can be written as follows:

It is true that in the given case these associations will prove useless, but continuing with such attempts the human being will finally find the solution:
  A -> D -> I -> Z.   It is also possible, of course, to approach the problem from goal Z. The main thing is that the table of associations itself does not remain unchanged; it becomes an object of work according to the trial and error method and new lines are added to it. Further, these lines do not appear through the influence of the environment (which determines only the initial list of associations), they result from the functioning of a special mechanism which follows its own rules and laws.

The higher animals also have the rudiments of imagination, which manifest themselves, as has already been noted, particularly in games. Elements of imagination can be clearly discerned in the behavior of the anthropoid apes, which show a resourcefulness dogs and other animals cannot attain. There have been experiments in which an ape has used a support (a cube) to reach a suspended lure, and has even placed one cube on top of another if necessary. With a stick, the ape can push a lure out of a segment of pipe. It can find an appropriate stick, and even split it in half if it is too thick and does not go into the pipe. This can be considered the beginning of toolmaking.

All the same, the boundary is not between the dog and the ape, but between the ape and the human being. At some moment our ancestors' ability to control associating crossed a threshold, beyond which it became an important factor for survival. Then this capability was refined during the course of evolution. The metasystem transition was completed; the human being had become distinct from the world of animals.

Many factors played parts in the process of humanization, above all the organization of the limbs of the man-ape. No matter what wise instructions the brain might give, they would come to naught if it were physically impossible to execute them. On the other hand, the existence of organs capable of executing subtle actions does not by itself give rise to thinking: Insects are physically capable of very complex operations; the limbs of the dinosaurs could, in principle, have served as the starting point for the development of arms; the tentacles of the octopus are more perfect in design than our arms. Unquestionably the leading role is played by the brain. At the same time, the arms of the man-ape and the possibility of having them free when walking fostered a situation where the brain's capability for control of associations became (through the mediation of using and making tools) a factor of decisive importance for survival. Other factors, such as a sharp change in natural conditions, could operate in this same direction. It may be that some other circumstances also played a part. Clarifying the concrete conditions of the origin of the human being and the role played in this process by various circumstances is a complex and interesting problem on which many scientists are working, but it is not the subject of this book. For us it is enough to know that the combination of conditions necessary for the metasystem transition did come about.

 Because the goals which are the most important elements in a plan are representations, the ability to associate representations arbitrarily means the ability to make plans arbitrarily. The human being can decide as follows: first I will do A, then B, then C, and so forth. The corresponding chain of associations arises. The human being can decide that it is absolutely necessary to do X. The association ''X--necessary'' arises. New, concrete plans also occur to the animal constantly, but the mechanism of their occurrence is different. They are always part of a more general (standing higher in the hierarchy) plan and, in the end, a part of instinct. The goals the animal sets are always directed to executing an instinctive plan of actions. The instinct is the supreme judge of animal behavior--its absolute and immutable law. The human being also inherits certain instincts, but thanks to the ability to control associations he can get around them and create plans not governed by instinct and even hostile to it. Unlike the animal, the human being sets his own goals. Where these goals and plans are taken from and what purpose they serve is another matter. We shall take this up when we discuss the human being as a social being. For now, the only thing to keep in mind is that the human brain is organized in a way that makes it possible to go beyond the framework of instinctive behavior.

 

THE INTERNAL TEACHER

THE HUMAN BEING does not by any means perform each operation ''through personal imagination''--that is, as if discovering it for the first time. On the contrary, a person (at any rate an adult) does most operations without using imagination; they are routine and customary, and they are regulated by already established associations. The mechanism of such operations does not differ from what we observed in animals, and we call the method by which the necessary associations are developed learning, just as with animals. But the mechanism of learning in humans and animals differs radically.

In the animal, new associations are in a certain sense imposed from outside. For an association to form it must have motivational grounds, be related to a negative or positive emotion. Reinforcement is essential. In other words, teaching takes place only by the ''carrot and stick'' [in Russian, literally, ''knout and cake'']. When a person learns, he himself is taking steps toward learning; but this is not because he knows that ''learning is useful.'' The baby does not know this, but it learns most easily and actively. In the baby, associations "simply form'' without any reinforcement. This is the functioning of the mechanism for control of associating, which requires nourishment. If he does not have it the person becomes bored, a negative emotion. There is no need for the teacher to force anything on the child, or upon people in general: the teacher's job is simply to provide nourishment for the imagination. Upon receiving this nourishment a person feels satisfaction. Thus, he himself is always learning inside. This is an active, creative process. Thanks to the metasystem transition, the human being acquired his own internal teacher who is constantly teaching him, driving him with the internal stick and luring him with the internal carrot.

The ''internal teacher'' is not a fanatic; he takes a realistic approach to his pupil's capabilities. Representations which coincide or are close in time by no means always form stable associations. If they did, it would indicate the existence of absolute memory--that is, total recall. We do not know why we do not have this capability; it may be supposed that the brain's information capacity is simply inadequate. But the existence of people whose capabilities for memorization are substantially greater than average appears to contradict this hypothesis and leads us to conclude that the lack of such capability is more likely the result of some details involving the organization of control of associating. In any case, because there is no absolute memory there must be a criterion for selecting associations. One of the human criteria is the same as found among animals: emotional strain. We memorize things involving emotions first of all. But the human being also has another criterion (which is, by the way, evidence of the existence of control of associating): we can decide to memorize something and as a result in fact do memorize it. Finally, the third and most remarkable criterion is that of novelty. We know that people memorize things new to them and let old things go by (''in one ear and out the other''). But what is the difference between ''new'' and "old?" After all, strictly speaking no impression is ever repeated. In this sense every impression is a new one. But when we hear talk on a hackneyed subject or see hackneyed situations on a movie screen we start to yawn and wave our hand in annoyance: ''This is old!'' When the stream of impressions fits into already existing models, our ''internal teacher'' sees no need to change the model and the impressions slip by without any consequences. This is the case when we know ahead of time what is coming. But when we do not know what is coming (or even more so when it contradicts the model) then new associations appear and the model becomes more complicated. The relationship to the model already existing in the brain is the criterion for the novelty of an impression.

As we begin to talk about memory and other aspects of the human psyche, we touch on many unresolved problems. Fortunately, a systematic presentation of human psychology, particularly in its "cyberneticized'' variation, is not part of our task. We shall be content with a quick survey of the psychological characteristics that distinguish human beings from animals in order to be sure that they are the natural results of the metasystem transition--the appearance of an apparatus for controlling associating.

We have seen that the control of associating leads to a qualitative difference between the human and the animal in susceptibility to learning. We shall also note in passing that the enormous quantitative difference that exists between these levels for humans and animals, and that is expressed simply in the quantity of information memorized in the process of learning, is also a direct consequence of the metasystem transition. It follows from the aforementioned law of branching of the penultimate level. In this case the penultimate level consists of the physical devices for the formation of associations. Multiplication of these devices means enlarging memory. We shall deviate here from our principle of not considering structural models of the brain to point out the branching of the human cerebral cortex, which according to general (and well-founded) opinion is the storage place for associations.

 

 

Figure 4.1. Area of the cerebral cortex in the horse, orangutan, and human being.

 

THE FUNNY AND THE BEAUTIFUL

ALL THE SAME, qualitative differences are more interesting. We have already established that the existence of a special apparatus for the control of associating makes learning an active process involving positive and negative emotions for the human being. These are truly human emotions which are inaccessible to beings that do not possess this apparatus. The goal of associating is the construction of a model (or models) of the environment, and we may therefore conclude that a new emotion will be positive if it establishes an association which improves the brain model of the world. This emotion can be called the pleasure of novelty using the term ''novelty'' in the sense we gave it above. The corresponding negative emotion is called boredom. We have already enumerated the criteria for establishing and reinforcing associations and separated the criterion of novelty from the criterion of the existence of emotional reinforcement. We had in mind ordinary emotions common to humans and animals. When we raise the pleasure of novelty to the rank of an emotion we can declare the third criterion to be a particular case of the first. Then we can say that involuntary associating always involves emotional reinforcement, but compared to the animal the human being possesses a fundamentally new class of emotions.

 Yes, that is right, a class. The ''pleasure of novelty'' is a very general term which covers a whole class of emotions. We can immediately point out two plainly different representatives of this class: the sense of the funny and the sense of the beautiful. Hardly anyone today would try to maintain that he has fully and finally understood the nature of these emotions and can give them a detailed cybernetic interpretation. Unquestionably, however, they are inseparable from cognition of the world, from the creation of new models.

 What makes us laugh? A disruption of the ''normal'' course of events which is completely unexpected but at the same time natural, and in hindsight entirely understandable: an unexpected association, meaningless at first glance but reflecting some deep-seated relationships among things. All this, of course, creates a new model of the world and gives pleasure proportional to its novelty. When it is no longer new it is no longer funny. When someone tries to make us laugh using a very familiar model we call it ''flat'' humor. But this is a very relative concept. Everyone is familiar with the situation where a joke is told and one listener bursts out laughing while the other smiles sourly. The difference between the two listeners is obviously the absence or presence of the corresponding model. Another situation very important for clarifying the nature of humor occurs when one person laughs and another glances around uncomprehending. ''He didn't get it,'' they say in such cases. The joke was too subtle for this person; it relied on associations he did not have. What is funny is always on the borderline between the commonplace the unintelligible. Every person has his own borderline and the line shifts in the process of individual development. Nothing shows the level of a person's sophistication so clearly as his understanding of what is funny.

 There are more individual differences among people in their sense of the beautiful--a sense more subtle and mysterious than the sense of humor. But here too we find the same dynamism related to the novelty of the impression. Frequent repetition of a pleasing piece of music creates indifference to it, and finally revulsion. A sharp sensation of the beautiful is short in duration; it includes the element of revelation. enchanting surprise. It can also be described as the sudden discernment of some deep order, correspondence, or meaning. If we attempt to interpret this phenomenon cybernetically, we may assume that the sense of the beautiful evokes impressions which give nourishment to the most complex and subtle models, which employ classifiers on the highest level. These classifiers must, of course, compress information to the maximum degree and recognize extremely complex concepts. That is what discernment of a deep internal order in apparent disorder is.

All models are hierarchical. The more complex is built on the simpler, and the higher rests on the lower. A person may be insufficiently developed in esthetic terms and not see beauty in a place where others do see it. To an untrained listener a masterpiece of symphonic music will seem to be a meaningless cacophony. On the other hand, a banal melody or a primitive geometric ornament will not elicit a sensation of the beautiful in us; in this case the order is too obvious. When we say in "us,'' we are speaking of modern, civilized people. It is possible that a Neanderthal would be shaken to the depth of his soul upon seeing a series of precisely drawn concentric circles. The beautiful too is always found on the borderline between the commonplace and the unintelligible. Shifting this line, which we can define as esthetic education, is cognition of the world and the consequent construction of new models in the brain.

We are taking the sense of the beautiful in its pure form. In reality it is ordinarily bound up with other human feelings, often forming inseparable groups and therefore influencing many spheres and aspects of societal life. The value of esthetic experiences, which may be called its applied value, has long been widely recognized. The situation with pure esthetics is worse. Now and again through the course of human history there have been calls to put an end to pure esthetics once and for all, as something not simply useless but even directly harmful. (The harm has been understood in different ways. Some have proclaimed beauty to be sinful while others have argued that it distracts from the class struggle.) On the other hand, there have been attempts by the vulgar materialist school to explain and ''justify" the beautiful by reducing it to the useful in the most ordinary, everyday sense of the word. This is like someone praising a transistor radio because it can be used to drive nails and crack nuts. This attitude arises from a failure to understand that pure esthetic education trains the brain to perform its highest and most subtle functions. The brain is unitary. The models created in the process of esthetic education unquestionably influence a person's perception of the world and his creative activity. Exactly how this happens is unknown. Esthetic education is more precious because we know of no substitute for it.

 

LANGUAGE

UNTIL NOW we have considered the human being as an individual only and have been interested in the capabilities of the human brain. With this approach it is not at all obvious that the appearance of the human being on earth was such a major revolution in the history of life. The frog was more intelligent than the jellyfish. The dog was more intelligent than the frog. The ape was more intelligent than the dog. Now there appeared a being which was more intelligent than the ape. Well, so what'?

 The revolution was created by the appearance of human society which possessed a definite culture, above all language. The key aspect here is language. Language in general is understood to be a certain way of correlating objects Rj, which are considered to be some kind of primary reality, to objects Li which are called the names of objects Ri and are viewed as something secondary, especially created to be correlated to objects Ri . In relation to the name Li object Ri is called its meaning. The aggregate of all objects Li is frequently also called a language (in a more expanded form it would be better to call it the material fixer or carrier of the language). The set of objects Ri can be much broader and more varied than the set of language objects Li This is the case, for example, with natural languages such as Russian, English, and others. It is clear that an enormous amount of information is lost when word descriptions are substituted for the perception of real objects and situations. In those cases where the information levels of objects Ri and Li are on the same order of magnitude, the cybernetic term code is often used in place of the word ''language.'' The transition from R to L is called coding and the opposite transition from L to R is decoding. Thus, when a message is transmitted in 'Morse' Code by radio, the initial text--a set of letters--is coded in a set of dots and dashes. In this code (language), information travels through the air and is received at an assigned point, where decoding from the language of dots and dashes to the language of letters takes place. In this case the process of coding and decoding does not cause information loss.

Because there are no more convenient and generally accepted terms than coding and decoding for the transition from the meaning to the name we shall use these terms in the most general sense, disregarding the ratio of information levels (and calling language simply that, and not ''code'').

Objects Ri and Li may be arbitrary in nature; they do not have to be physical objects but, speaking generally, may be phenomena such as sound oscillations. Let us note that 'phenomenon'' is the most general term we can use to designate a part of physical reality which is limited in space and time; ''physical object,'' by contrast, is a less clear-cut concept which refers to phenomena of a special type that reveal a certain stability: they have a surface across which the exchange of matter does not take place. This concept is not clear-cut because there are no absolutely impenetrable boundaries in reality and so-called ''physical objects'' are continuously changing. This is a relative concept which only reflects a low rate of change.

Elementary language is also found among animals, especially among those living in communities, which therefore must somehow coordinate their actions and ''clarify relationships.'' We call this language elementary only in comparison with human language; by itself animal language is not at all simple and evidently well satisfies the needs of members of the community for the exchange of information. The danger signal, the call for help, the intention to initiate mating relationships and the acceptance or rejection of this intention, the order to obey, and the order for everyone to head home--these and other components are found in the languages of most birds and mammals. They are expressed by gestures and sounds. When bees return to the hive from a honey-gathering expedition they show the other bees where they have been by performing certain unique movements which resemble a dance.

 

CREATION OF LANGUAGE

HUMAN LANGUAGE differs radically from animal language. As was the case with the use of tools. the animal language is something given at the start--an element of instinctive behavior. If language does change it is only along with changes in behavior accompanying the general evolution of the species. For the human being. Language is something incomparably more mobile and variable than behavior. The human being himself creates language: he has the capability (and even the need) to assign names, something no animal can do. Giving names to phenomena (specifically, to physical objects) is perhaps the simplest and most graphic manifestation of the control of associating. There is nothing in common between the word ''lion" and a real lion, but nonetheless the association between the word and its meaning is established. It is true that many onomatopoetic words appeared in the dawn of human culture. There is an abundance of such words in the languages of primitive cultures. The same thing is even more true of gestures, which have obviously always been imitative at base. But this does not change the nature of the association between the name and the meaning as the result of deliberate associating. Let us suppose that in some primitive language the lion is called ''rrrrr.'' The association between "rrrrr" and the lion does not arise because this sound can be confused with the lion's roar (it would be quite a hunter who was capable of making such a mistake), but because in searching for a name for the lion the human being sorts through the animal's characteristics in his imagination and selects one of them which permits at least an approximate reproduction. The creator of a name perceives it subjectively as something close to the meaning-- something like it or, to be more precise, likened to it. This is because the objective resemblance between the name and the meaning cannot be large; it is almost nil and serves only as an umbilical cord, which withers away soon after the name is born. The association between the name and the meaning does not arise at all in the way that the association between types of dishes and salivation arose in Pavlov's experiments with dogs. The latter was a conditioned reflex, but the former is creation of language. The occasion that brought about the choice of the name is forgotten and the name itself is transformed, but the relationship between the name and its meaning does not suffer from this.

 

LANGUAGE AS A MEANS OF MODELING

LANGUAGE ARISES as a means of relationship, of communication among members of a primitive community. But once it has arisen it immediately becomes a source of other, completely new possibilities which are not in principle related to relationships among people. What these possibilities are we shall demonstrate with the example of the language of numbers.

Let us imagine a young man from the primitive Nyam-Nyam tribe. We shall call him Uu. Now let us see how he performs the duties of scout.

Uu is lying behind a thick old oak tree and keeping constant watch on the entrance to a cave on the opposite bank of the river. At sunrise a group of men from the hostile Mayn-Mayn tribe approach. They are obviously planning something bad, probably setting up an ambush in the cave. They scurry back and forth, now going in the cave and now coming out, first disappearing in the forest and then returning to the cave. Each time an enemy enters the cave Uu bends over one finger, and when an enemy comes out of the cave he unbends one finger. When the enemy goes away Uu will know if they have left an ambush party and, if they have, how many people are in it. Uu will run to his own tribe and tell them with his fingers how many enemy men remain in the cave.

 

Our hero is able to know how many men are in the cave at any moment because he has used his fingers to construct a model of that part of the external world which interests him. And what interests him is the cave and the enemy in it. In his model one bent finger corresponds to each enemy in the cave. A bent finger is the name of the enemy in the cave; an enemy in the cave is the meaning of a bent finger. The operations performed on the names, bending and unbending the fingers, correspond to the entrances and exits of enemies from the cave. This is a language. It can be called a finger language if we are looking at the physical material from which the model is constructed or a number language if we are looking at the method of correlating names with meanings. And this language is used not so much for information transmission as for constructing a model which is needed precisely as a model--as a means of foreseeing events, a means of finding out indirectly that which cannot be found out directly. If his native Nyam-Nyam tribe is far away and Uu does not intend to tell anyone how many enemy men are in the cave, in order to plan his own course of action he still has reason to count them. The communicative use of language (a means of communication among people) is supplemented by the noncommunicative use of language (a means of constructing models of reality).

 We come now to the crux of the matter. The modeling function of language is that final element which we lacked for assessing the appearance of the human being on earth as the boundary between two ages, as an event of cosmic importance. When an astronomer determines the position of the planets in the sky, makes certain calculations, and as a result predicts where the planets will be after a certain interval of time, he is essentially doing the same thing that Uu did when he bent and unbent his fingers as he watched the entrance to the cave. Art, philosophy, and science--all these are simply the creation of linguistic models of reality. The remainder of this book will be devoted to an analysis of this process, its laws and results. But first we shall take a general look at its place in the evolution of the universe.

SELF-KNOWLEDGE

THE ANIMAL has no concept of itself; it does not need this concept to process information received from outside. The animal brain can be compared to a mirror that reflects the surrounding reality but is not itself reflected in anything. In the most primitive human society each person is given a name. In this way, a person, represented in the form of sentences containing the person's name, becomes an object for his or her own attention and study. Language is a kind of second mirror in which the entire world, including each individual, is reflected and in which each individual can see (more correctly, cannot help but see!) his or her own self. Thus the concept of ''I" arises. If the stage of cognition may be called the concluding stage of the cybernetic period, the era of reason is the era of self-knowledge. The system of two mirrors, the brain and language, creates the possibility of a vast multitude of mutual reflections without going outside the space between the mirrors. This gives rise to the unsolved riddles of self-knowledge, above all the riddle of death.

 

A CONTINUATION OF THE BRAIN

LET US SUPPOSE that three enemies enter the cave and two come out. In this case even without the use of fingers the primitive man will know that one enemy has remained in the cave. A model he has in his brain is operating here. But what if 25 go in and 13 or 14 come out? In this case the human brain will be impotent; it does not contain the necessary model, the necessary concepts. We instantaneously and without error distinguish sets of one, two, three, and four objects and can imagine them clearly. These concepts are given to us from nature and are recognized by the nerve net of the brain, just as the concepts of spot, line, contiguity, and the like are. It is not so easy with concepts expressed by the numbers between five and eight; here a great deal depends on individual characteristics and training. As for the concepts of ''nine,'' ''ten.'' and so on, with very rare exceptions they are all merged into the single concept of ''many.'' And then the human being creates a language whose material carrier (for example the fingers) serves as a fixer of new concepts, performing the functions of those classifiers for which no room was found in the brain. If there are not enough fingers then pebbles. Little sticks. and chips will come into play . . . and in the more developed languages, numbers and sets of numbers. The language used is not important; the ability to encode is. The process of counting serves for the recognition of new concepts, performing the functions of the nerve net which is put in a stimulated state by some particular classifier. As a result of counting, the object R (which for example represents an enemy detachment) is correlated with object L (which for example is a series of chips or numbers). Finally, the rules for operations with the language objects and the relations among them (for example of the type 6 + 3 = 9 and so on) correspond to associations between concepts in the brain. This concludes the analogy between models realized by means of language and models created by the neuron nets of the brain.

 If the tool is a continuation of the human hand, then language is a continuation of the human brain. It serves the same purpose as the brain: to increase the vitality of the species by creating models of the environment. It continues the work of the brain using material lying outside the physical body, basing itself on models (concepts and associations) of the pre-language period which are realized in nerve nets. It is as if the human being had stepped across the boundary of his own brain. This transition, this establishment of a relationship between internal and external material, became possible owing to the capability for control of associating, which was expressed in the creation of language.

The two functions of language, communication and modeling, are inseparably interconnected. We gave counting on the fingers as an example of a model which arises only thanks to language and which cannot exist without language. When language is used for communication it performs a more modest task: it fixes a model which already exists in someone's brain. Phrases such as "It is raining" or ''There are wolves in the neighboring forest,'' or more abstract ones such as 'poisonous adder'' or ''fire extinguishes water,'' are models of reality. When one person communicates this to another the associations, which were formerly in the head of the first person only, become established in the head of the second.

Owing to the existence of language human society differs fundamentally from animal communities. In the animal world members of a community communicate only on the level of functions related to food and reproduction. Members of human society communicate not only on this level, but also on the highest level of their individual organization, on the level of modeling the external world by means of the association of representations. People have contact by brain. Language is not only a continuation of each individual brain but also a general, unitary continuation of the brains of all members of society. It is a collective model of reality on whose refinement all members of society are working, one that stores the experience of preceding generations .

 

SOCIAL INTEGRATION

THE METASYSTEM transition in the structure of the brain, control of associating, generated a new process. that of social integration--the unification of human individuals into a certain new type of whole unit: human society. All human history has gone forward under the banner of social integration; relations among people are growing qualitatively and quantitatively. This process is taking place at the present time, very intensively in fact, and no one can say for sure how far it will go.

Social integration is a metasystem transition; it leads to the appearance of a new level of organization of matter. the social sphere. Communities of animals can be viewed as the first (and unsuccessful) attempts to make this transition. We know communities of animals, for example ants, in which certain individuals are so adapted to life within the community that they cannot live outside it. The anthill may with full justification be called a single organism; that is how far interaction among individuals and specialization of them has gone in it. But this interaction remains at the level of the lowest functions. There is no "contact among brains." There is no creation of new models of reality. No fundamentally new possibilities are opened up because of the joining of ants into a society; they are frozen in their development. The anthill is, of course, a metasystem in relation to the individual ant. The integration of individuals takes place. However, this is not a new stage in evolution, but merely a digression, a blind alley. In Russian literature the word sotsial'nyi (social) which has the same literal meaning as the word obshchestvennyi, has traditionally been used to apply to human society only, thus emphasizing the fundamental difference between it and animal society. That is why I use the term sotsial'nyi here and it is how the phrases ''social sphere" and ''social integration'' must be understood.

 

 

Figure 4.2. Stages in the evolution of life

 

Thus, attempts by nature to form a new stage in the organization of matter by integrating multicellular organisms had no significant results for a long time: there was no appropriate material. A metasystem transition in the structure of the brain was needed in order for individuals to acquire the capability to make the necessary connections. One other consequence of the control of associating is very important for development of the social sphere. This is the capability of the human being to go beyond instinct, to construct plans of action that are completely unrelated to instinct and sometimes even contradict it. These two characteristics make the human being a social being--that is, material suitable for building human society, the social unit as opposed to the individual. The word ''material'' in reference to human beings sounds wrong, somehow degrading. Do you in fact think there is some kind of higher being who is building society using human beings as material? Of course not. The human being himself is the creator. And this is not some abstract Human (with a capital letter). but a concrete human, a human personality, an individual. Everything that society possesses has been produced by the creativity of human individuals. But at the same time (such is the dialectic of the relationship between the personality and society) the human being is significant only to the extent that he or she is significant for society. This must not be understood, of course. to mean that someone who is not recognized is not a genius. A person may oppose the entire society, that is to say all those people living at a given moment, but at the same time be guided by the interests of society. the logic of society's development. There are two levels of the organization of matter: the animal level, for which the highest laws are the instincts of selfpreservation and reproduction, and the human level, which means human society. Everything in the human being that we call distinctly human is a product of the development of society. The human being as a purely biological (pre-social) being is nothing but the possibility of the human being in the full sense of the word. If there is any logic at all in human actions it is either the logic of animal instincts or the logic of society s development (possibly veiled and not recognized as such). There is simply nowhere else to find any other logic. Therefore, although there is no being to whom the human. acting as creator, is subordinate, the human being is nevertheless subordinate to some highest law of evolution of the universe and, it may be said, is the material for the action of this law.

 

THE SUPER-BEING

THE APPEARANCE of human society is a large-scale metasystem transition in which the subsystems being integrated are whole organisms. On this level it may be compared with the development of multicellular organisms from unicellular ones. But its significance, its revolutionary importance. is immeasurably greater. And if it is to be compared to anything it can only be compared to the actual emergence of life. For the appearance of the human being signifies the appearance of a new mechanism for more complex organization of matter, a new mechanism for evolution of the universe. Before the human being the development and refinement of the highest level of organization, the brain device, occurred only as a result of the struggle for existence and natural selection. This was a slow process requiring the passage of many generations. In human society the development of language and culture is a result of the creative efforts of all its members. The necessary selection of variants for increasing the complexity of organization of matter by trial and error now takes place in the human head. It can take place at the level of intuition-- as the result of sudden enlightenment and inspiration-- or it may break down into distinct, clearly recognized steps. But in one way or the other it becomes inseparable from the willed act of the human personality. This process differs fundamentally from the process of natural selection and takes place incomparably faster, but in both its function (constructing and using models of the environment) and in its results (growth in the total mass of living matter and its influence on nonliving matter) it is completely analogous to the earlier process and is its natural continuation. The human being becomes the point of concentration for Cosmic Creativity. The pace of evolution accelerates manyfold.

 Society can be viewed as a single super-being. Its ''body'' is the body of all people plus the objects that have been and are being created by the people: clothing, dwellings, machines, books, and the like. Its "physiology" is the physiology of all people plus the culture of society--that is, a certain method of controlling the physical component of the social body and the way that people think. The emergence and development of human society marks the beginning of a new (the seventh in our count) stage in the evolution of life. The functional formula of the metasystem transition from the sixth stage to the seventh is: control of thinking = culture  

Language is the most important constituent part of culture. It fulfils the functions of a nervous system. As in the nervous system of a multicellular organism, its first function historically and logically is the communicative function, the exchange of information among subsystems and coordination of their activity. In the process of carrying out this function language, again precisely like the nervous system ''one step lower,'' receives a second function: modeling the environment. And just as stages related to metasystem transitions can be identified in the development of the brain, so the development of language models takes place (as we shall see) by successive metasystem transitions in the structure of language.

The parallels between society and a multicellular organism have long been noted. But the question is: what are we to make of these parallels? It is possible to consider them, if not random, then at least superficial and insignificant--something like the resemblance between the boom of a hoisting crane and the human arm. But the cybernetic approach brings us to another point of view according to which the analogy between society and the organism has a profound meaning, testifying to the existence of extraordinarily general laws of evolution that exist at all levels of the or~anization of matter and pointing out to us the direction of society's development. This point of view conceals in itself a great danger that in vulgarized form it can easily lead to the conception of a fascist-type totalitarian state. In chapter 14, in our discussion of the problem of creative freedom of the personality, we shall consider this question in greater detail too. For now we shall note that the possibility a theory may be vulgarized is in no way an argument against its truth. The branch of modern science called cybernetics gives us concepts that describe the evolutionary process at both the level of intracellular structures and the level of social phenomena. The fundamental unity of the evolutionary process at all levels of or~anization is transformed from a philosophical view to a scientifically substantiated fact. When thinking of the destiny of humanity and its role in the universe one cannot ignore this fact.

To emphasize the cosmic importance of reason the French scientists Leroy and Teilhard de Chardin introduced the term ''noosphere'' (that is, the sphere of reason) to signify that part of the biosphere where reason reigns. These ideas were taken up by V. P. Vernadsky (see his article entitled ''A Few Words About the Noosphere''). In the preface to his main work Le phénomène humain (The Phenomenon of Man, translated by B. Wall, New York: Harper and Row Torchbook ed., 1965, p 36) Teilhard de Chardin writes: